熔断、限流、降级 —— SpringCloud Alibaba Sentinel
Sentinel 简介
Sentinel 是阿里中间件团队开源的,面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流、流量整形、熔断降级、系统负载保护、热点防护等多个维度来帮助开发者保障微服务的稳定性
Sentinel 提供了两个服务组件:
- Sentinel 用来实现微服务系统中服务熔断、降级等功能
- Sentinel Dashboard 用来监控微服务系统中流量调用等情况
限流算法
限流的方式有很多,常用的有计数器、漏桶和令牌桶等
1. 计数器
采用计数器是一种比较简单的限流算法,一般会限制一秒钟能够通过的请求数。比如限流 QPS 为 100,算法的实现思路就是从第一个请求进来开始计时,在接下来的 1 秒内每来一个请求就把计数加 1,如果累加的数字达到了 100,后续的请求就会被全部拒绝。等到 1 秒结束后,把计数恢复成 0,重新开始计数。如果在单位时间 1 秒内的前 10 毫秒处理了 100 个请求,那么后面的 990 毫秒会请求拒绝所有的请求,我们把这种现象称为突刺现象
2. 漏桶算法
漏桶算法的思路很简单,一个固定容量的漏桶按照常量固定速率流出水滴。如果桶是空的,就不需要流出水滴。我们可以按照任意速率流入水滴到漏桶。如果流入的水滴超出了桶的容量,流入的水滴就会溢出(被丢弃),而漏桶容量是不变的。漏桶算法提供了一种机制,通过它可以让突发流量被整形,以便为网络提供稳定的流量
3. 令牌桶算法
令牌桶算法是比较常见的限流算法之一,可以使用它进行接口限流。令牌按固定的速率被放入令牌桶中,当桶装满时,新添加的令牌会被丢弃或拒绝。当请求到达时,将从桶中删除 1 个令牌。令牌桶中的令牌不仅可以被移除,还可以往里添加,所以为了保证接口随时有数据通过,必须不停地往桶里加令牌。由此可见,往桶里加令牌的速度决定了数据通过接口的速度。我们通过控制往令牌桶里加令牌的速度来控制接口的流量
4. 漏桶算法和令牌桶算法的区别
- 漏桶算法是按照常量固定选率流出请求的,流入请求速率任意,当流入的请求数累积到漏桶容量时,新流入的请求被拒绝
- 令牌桶算法是按照固定速率往桶中添加令牌的,请求是否被处理需要看桶中的令牌是否足够,当令牌数减为零时,拒绝新的请求
- 令牌桶算法允许突发请求,只要有令牌就可以处理,允许一定程度的突发流量
- 漏桶算法限制的是常量流出速率,从而使突发流入速率平滑
Sentinel Dashboard
Sentinel 提供一个轻量级的开源控制台,包含如下功能:
- 查看机器列表以及健康情况:收集 Sentinel 客户端发送的心跳包,用于判断机器是否在线
- 监控(单机和集群):通过 Sentinel 客户端暴露的监控 API,定期拉取并且聚合应用监控信息,最终可以实现秒级的实时监控
- 规则管理和推送:统一管理推送规则
- 鉴权:在生产环境中,鉴权非常重要,这里每个开发者需要根据自己的实际情况进行定制
从 GitHub 可以下载 Sentinel 安装包:https://github.com/alibaba/Sentinel/
下载得到的是一个 jar 包(sentinel-dashboard-1.8.6.jar),可以直接通过 Java 命令启动,如 java -jar 方式运行,默认端口为 8080,通过 http://localhost:8080/ 访问,用户名和密码默认是 sentinel
客户端接入控制台
引入依赖
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
配置文件配置如下:
spring:
cloud:
sentinel:
transport:
port: 18000 # 指定应用与sentinel控制台交互的端口
dashboard: localhost:8080 # sentinel后台地址
eager: true # 开启sentinel,默认开启
Sentinel 限流
Sentinel 流量控制的原理是监控应用流量的 QPS 或并发线程数等指标,当达到指定的阈值时对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性
使用注解方式实现限流如下:
@Slf4j
@RestController
public class TestCon {
@GetMapping("/test/byResource")
@SentinelResource(value = "byResource", blockHandler = "handleException")
public void byResource() {
log.info("按资源名称限流");
}
public void handleException(BlockException exception) {
log.error("触发失败回调方法", exception);
}
}
@SentinelResource 注解用于定义资源,可选属性如下:
value:指定资源名称
blockHandler / blockHandlerClass:指定处理 BlockExccption 异常函数名称。函数要求必须是 public,返回类型与原方法必须一致,函数参数类型需要和原方法相匹配并在最后加 BlockException 类型的参数,函数默认和原方法在同一个类中。若希望使用其他类的函数可配置 blockHandlerClass,并指定 blockHandlerClass 里面的方法,注意对应的函数必需为 static 函数,否则无法解析
// TestCon.java
@GetMapping("/test/byResource")
@SentinelResource(value = "byResource", blockHandler="handleBolckForTest", blockHandlerClass={BlockHandlerClassTest})
public void byResource() {
log.info("按资源名称限流");
} // BlockHandlerClassTest.java
public static String handleBolckForTest(String name,int age, BlockException exception){
xxxxx
}
fallback / fallbackClass:用于在抛出异常的时候提供 fallback 处理逻辑,可以针对所有类型的异常(除了 exceptionsToIgnore 里面排除掉的异常类型)进行处理,返回值类型必须与原函数返回值类型一致,方法参数列表需要和原函数一致,或者可以额外多一个 Throwable 类型的参数用于接收对应的异常,fallback 函数默认需要和原方法在同一个类中,若希望使用其他类的函数,则可以指定 fallbackClass 为对应的类的 Class 对象,注意对应的函数必需为 static 函数,否则无法解析
在 Sentinel 控制台的流控规则中,新增流控规则,如图:

- 资源名:需要和
@SentineResource注解的 value 属性值保持一致 - 针对来源:默认 default,表示对所有来源进行限流,有时候我们会希望根据上级微服务或者请求来源进行限流,可以根据自身的需求进行相应的配置
- 阈值类型:Sentinel 限流策略有两种统计类型,一种是统计并发线程数,另一种是统计 QPS
- 当 QPS 超过某个阈值的时候,采取措施进行流量控制,包括:
- 直接拒绝:默认的流量控制方式,当 QPS 超过任意规则的阈值,新的请求会被立即拒绝并抛出 FlowExccption
- Warm Up:预热/冷启动方式,在系统长期处于低水位的情况下,当流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮,通过冷启动让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮
- 匀速排队:严格控制请求通过的间隔时间,即让请求以均匀的速度通过,对应的是漏桶算法
- 当 QPS 超过某个阈值的时候,采取措施进行流量控制,包括:
- 流控模式:
- 直接:接口达到限流条件时,开启限流
- 关联:当指定接口关联的接口达到限流条件时,开启对指定接口开启限流,举例:设置关联资源为 byResource2,那么当 byResource2 达到限流条件时,byResource 将不可用
- 链路:当从某个接口过来的资源达到限流条件时,开启限流,举例:有两个接口 getResource1 和 getResource2 能调用 byResource 资源,如果设置了 getResource1 并达到限流条件,那么将无法再通过 getResource1 调用 byResource,而 getResource2 不受影响
熔断、限流、降级 —— SpringCloud Alibaba Sentinel的更多相关文章
- Spring Cloud Alibaba系列(五)sentinel实现服务限流降级
一.sentinel是什么 sentinel的官方名称叫分布式系统的流量防卫兵.Sentinel 以流量为切入点,从流量控制.熔断降级.系统负载保护等多个维度保护服务的稳定性.在Spring Clou ...
- 限流降级神器,带你解读阿里巴巴开源 Sentinel 实现原理
Sentinel 是阿里中间件团队开源的,面向分布式服务架构的轻量级高可用流量控制组件,主要以流量为切入点,从流量控制.熔断降级.系统负载保护等多个维度来帮助用户保护服务的稳定性. 大家可能会问:Se ...
- 阿里熔断限流Sentinel研究
1. 阿里熔断限流Sentinel研究 1.1. 功能特点 丰富的应用场景:例如秒杀(即突发流量控制在系统容量可以承受的范围).消息削峰填谷.集群流量控制.实时熔断下游不可用应用等 完备的实时监控:S ...
- 微服务熔断限流Hystrix之流聚合
简介 上一篇介绍了 Hystrix Dashboard 监控单体应用的例子,在生产环境中,监控的应用往往是一个集群,我们需要将每个实例的监控信息聚合起来分析,这就用到了 Turbine 工具.Turb ...
- SpringCloud Alibaba Sentinel 限流详解
点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你,很高兴能够成为你的朋友. 项目源码地址:公众号回复 sentinel,即可免费获取源码 熔断规则 在上一篇文章中我们讲解了 ...
- 轻量级熔断降级框架 alibaba sentinel 应用
一.简介: wiki:https://github.com/alibaba/Sentinel/wiki 选择: ♥ 开源,成熟(功能完备.实际应用),活跃(功能维护及拓展) ♥ 更轻量:依赖资源少:a ...
- SpringBoot进阶教程(六十八)Sentinel实现限流降级
前面两篇文章nginx限流配置和SpringBoot进阶教程(六十七)RateLimiter限流,我们介绍了如何使用nginx和RateLimiter限流,这篇文章介绍另外一种限流方式---Senti ...
- 代理层Nginx限流(降级)预案
典型服务架构介绍 预案适用场景 监控指标 操作手册 相关文档 操作方法 配置语法 配置样例 配置解释 注意事项 典型服务架构介绍 典型的互联网服务访问链路都是分层结构的,从流量入口,到应用层,到后端资 ...
- Envoy熔断限流实践(二)Rainbond基于RLS服务全局限流
Envoy 可以作为 Sevice Mesh 微服务框架中的代理实现方案,Rainbond 内置的微服务框架同样基于 Envoy 实现.本文所描述的全局限速实践也是基于 Envoy 已有的方案所实现. ...
- Envoy熔断限流实践(一)基于Rainbond插件实现熔断
Envoy 可以作为 Sevice Mesh 微服务框架中的代理实现方案,Rainbond 内置的微服务框架同样基于 Envoy 实现.本文所描述的熔断实践基于 Rainbond 特有的插件机制实现. ...
随机推荐
- easyEZbaby_app
for循环,这里给它化简255-i+2-98-未知数x需要等于'0'对应的ASCII值48,那么求x的值,x=111-i,而i的值就是从0到14,这样便可以计算出15位的密码 所以写出来的脚本
- 01_实验一_操作系统的启动start
实验一 操作系统的启动 从源代码到可运行的操作系统(前置知识) API 与 SDK 以 C 语言编写的操作系统为背景进行介绍,EOS 是由 C 语言编写的 操作系统和应用程序之间一个重要的纽带就是应用 ...
- AcWing 456. 车站分级
原题链接AcWing 456. 车站分级 抽象出题意,停靠过的车站的等级一定严格大于为停靠过的车站的等级,且不存在环,例如车站\(A\)等级大于车站\(B\),则\(A >= B + 1\),不 ...
- MongoDB 中的事务
MongoDB 事务 前言 如何使用 事务的原理 事务和复复制集以及存储引擎之间的关系 WiredTiger 中的事务隔离级别 WiredTiger 事务过程 事务开启 事务执行 事务提交 事务回滚 ...
- keepass
- 【结对作业】第一周 | 学习体会day06
初步做了app的页面 change作为mysql的关键字,不可以作为命名,否则报错 做了两条线路的中转 初步学习了frame标签,打算明天实现页面的部分切换
- H5自适应
一.设置html的font-size,使用rem作为单位 假设设计稿宽度750px,屏幕宽高750px, 1.1rem=屏幕宽度/设计稿宽度*100px,适合用px表示宽度 1rem=100px re ...
- [AGC038E] Gachapon
Problem Statement Snuke found a random number generator. It generates an integer between $0$ and $N- ...
- SpringBoot整合简单的定时任务~
定时任务框架很多种Quartz,SpringTask,xxljob,PowerJob... 1.JDK提供的timer // JDK提供的 Timer timer = new Timer(); //t ...
- LeetCode190:颠倒二进制(位运算分治! 时间复杂度O(1))
解题思路:这道题很两种解法,常规的就是O(n),另一种就是巧妙的利用位运算实现分治,时间复杂度O(1),类似于归并排序.不过这个递归不是自顶向下,而是巧用位运算从自底向上实现. 比如01001000通 ...