Chapter 5 Interaction
上一节介绍了modification, 这一节介绍一个类似的概念, interaction.
5.1 Interaction requires a joint intervention
之前都仅仅涉及了一个intervention (treatment) \(A\), 这里再引入另一个因素\(E \in \{0, 1\}\).
则, 此时\(Y^{a, e}\)有四种可能性:
Y^{0, 1},
Y^{1, 0},
Y^{1, 1}.
\]
则我们称intervention \(A\)与\(E\)之间存在interaction, 若
-
\mathrm{Pr}[Y^{a=0,e=1}=1]
\not =
\mathrm{Pr}[Y^{a=1,e=0}=1]
-
\mathrm{Pr}[Y^{a=0,e=0}=1],
\]
即, \(A\)关于\(Y\)的causal effect 在set不同的\(E=e\)的时候不同.
注: 这是一个对称的概念.
5.2 Identifying interaction
当\(Y^{a, e}\)与\(E\)独立的时候, 即
=
\mathrm{Pr}[Y^{a,e}|E=e]
=
\mathrm{Pr}[Y^{a}|E=e].
\]
此时可以发现, interaction 和 上一节所介绍的modification是一致的.
5.3 Counterfactual response types and interactions
所有的人都只有如下四种情况
Type & Y^{a=0} & Y^{a=1} \\
Doomed & 1 & 1 \\
Helped & 1 & 0 \\
Hurt & 0 & 1 \\
Immune & 0 & 0 \\
\end{array}
\]
对于被诅咒的或者免疫的人来说, 是否治疗是不改变结果的, 而对于helped 或者 hurt 的实际上才是causal effect所影响的东西.
这些type称之为response type.

关于\(A\), \(E\)则总共有16种response types.
可以发现, interaction若想要发生, 则至少2, 3, 5, 7, 8, 9, 10, 12, 14, 15中的一种发生.
5.4 Sufficient causes
此以及后面的都是讲另一套体系的, 就是研究什么因素必能推演出某个结果.
5.5 Sufficient cause interaction
5.6 Counterfactual or sufficient-component causes?
Fine Point
More on counterfactual types and interaction
From counterfactuals to sufficient-component causes, and vice versa.
Biologic interaction
More on the attribution fraction
Technical Point
Interaction on the additive and multiplicative scales
就是interaction的判定条件还可以改写为
-
\mathrm{Pr}[Y^{a=0,e=0}=1]
=
\{
\mathrm{Pr}[Y^{a=1,e=0}=1]
-
\mathrm{Pr}[Y^{a=0,e=0}=1]
\}
+
\{
\mathrm{Pr}[Y^{a=0,e=1}=1]
-
\mathrm{Pr}[Y^{a=0,e=0}=1]
\}
\]
以及相应的multiplicative的条件.
Monotonicity of causal effects
什么情况下\(Y^{a=1} \ge Y^{a=0}\)恒成立?
即不存在有人属于Helped type.
Monotonicity of causal effects and sufficient causes
Chapter 5 Interaction的更多相关文章
- advanced dom scripting dynamic web design techniques Part One DOM SCRIPTING IN DETAIL CHAPTER 1 DO IT RIGHT WITH BEST PRACTICES
You’re excited; your client is excited. All is well. You’ve just launched the client’s latest websit ...
- JavaScript- The Good Parts Chapter 4
Why, every fault’s condemn’d ere it be done:Mine were the very cipher of a function. . .—William Sha ...
- MongoDB:The Definitive Guide CHAPTER 2 Getting Started
MongoDB is very powerful, but it is still easy to get started with. In this chapter we’ll introduce ...
- advanced dom scripting dynamic web design techniques Chapter 2 CREATING YOUR OWN REUSABLE OBJECTS
JavaScript is all about objects. Objects are the foundation of everything, so if you’re unfamiliar w ...
- Chapter 6 — Improving ASP.NET Performance
https://msdn.microsoft.com/en-us/library/ff647787.aspx Retired Content This content is outdated and ...
- Professional C# 6 and .NET Core 1.0 - Chapter 39 Windows Services
本文内容为转载,供学习研究.如有侵权,请联系作者删除. 转载请注明本文出处:Professional C# 6 and .NET Core 1.0 - Chapter 39 Windows Servi ...
- Professional C# 6 and .NET Core 1.0 - Chapter 41 ASP.NET MVC
What's In This Chapter? Features of ASP.NET MVC 6 Routing Creating Controllers Creating Views Valida ...
- JVM Specification 9th Edition (2) Chapter 1. Introduction
Chapter 1. Introduction 翻译太累了,我就这样的看英文吧. 内容列表 1.1. A Bit of History 1.2. The Java Virtual Machine 1. ...
- Programming a Hearthstone agent using Monte Carlo Tree Search(chapter one)
Markus Heikki AnderssonHåkon HelgesenHesselberg Master of Science in Computer Science Submission dat ...
随机推荐
- Portrait Photography Beginners Guide
Please visit photoandtips稻糠亩 for more information. 六级/考研单词: vogue, derive, gorgeous, thereby, strict ...
- Spark(二)【sc.textfile的分区策略源码分析】
sparkcontext.textFile()返回的是HadoopRDD! 关于HadoopRDD的官方介绍,使用的是旧版的hadoop api ctrl+F12搜索 HadoopRDD的getPar ...
- Linux磁盘分区(一)之fdisk命令
Linux磁盘分区(一)之fdisk命令转自:https://www.cnblogs.com/machangwei-8/p/10353683.html 一.fdisk 的介绍fdsik 能划分磁盘成为 ...
- Hibernate 错误的问题
配了好几次的Hibernate,老是在create BeanFactory的时候fail.我是用MyEclipse自带的HIbernate,直接加进去的. private static final T ...
- entfrm-boot开发平台一览【entfrm开源模块化无代码开发平台】
介绍 entfrm-boot是一个以模块化为核心的无代码开发平台,能够让中小企业快速从零搭建自己的开发平台:开箱即用,可插拔可自由组合:以模块化的方式,最大化的代码复用,避免重复开发:无代码可视化开发 ...
- 设计模式学习笔记之看懂UML类图
什么是UML: UML(统一建模语言)是当今软件设计的标准图标式语言.对于一个软件系统而言,UML语言具有以下的功能:可视化功能.说明功能.建造功能和建文档功能. UML都包括什么类型的图: 使用案例 ...
- Linux系统下安装tomcat
一.前置条件 安装tomcat需要先安装jdk,所以没有安装jdk同学,详见参考文章 二.Linux上安装tomcat 1. 下载Apache tomcat tomcat官网下载地址 在左边,可以选择 ...
- OAuth2.0实战:认证、资源服务异常自定义!
大家好,我是不才陈某~ 这是<Spring Security 进阶>的第4篇文章,往期文章如下: 实战!Spring Boot Security+JWT前后端分离架构登录认证! 妹子始终没 ...
- [BUUCTF]PWN5——ciscn_2019_n_1
[BUUCTF]PWN5--ciscn_2019_n_1 题目网址:https://buuoj.cn/challenges#ciscn_2019_n_1 步骤: 例行检查,64位,开启了nx保护 nc ...
- CF831B Keyboard Layouts 题解
Content 给你 \(26\) 个字母的映射(都是小写,大写的映射方式相同),再给你一个字符串 \(s\),求它的映射结果(如果有非字母的字符保持不变). 数据范围:\(1\leqslant |s ...