Handing Incomplete Heterogeneous Data using VAEs
概
这篇文章利用VAE处理缺失数据, 以往的对缺失数据的处理往往是不区分连续离散, 数字符号的, 感觉这里利用分布的处理方式非常精彩.
主要内容
ELBO
首先, 既然是利用VAE, 那么就需要推导出相应的ELBO来.
文章首先假设数据\(x\)和隐变量之间关系满足:
\]
即\(x_n\)的各分量关于\(z_n\)的条件独立的.
进一步引入观测数据\(x^o\)和\(x^m\), 即
\left \{
\begin{array}{ll}
x_{nd}, & d \in \mathcal{O}_n \\
0, & d \in \mathcal{M}_n
\end{array}
\right ., \\
x^{m}_n = x_n - x_{n}^o.
\]
其中\(\mathcal{O}, \mathcal{M}\) 分别是观测的元素和缺失的元素位置, 且彼此是互斥的.
那么
\]
\]
则通过极大似然即可推出ELBO:
\log p(X^o)
&= \sum_{n} \mathbb{E}_{q(z_n|x_n^o)} \log \frac{p(x_n^o, z_n)}{q(z_n|x_n^o)} \frac{q(z_n|x_n^o)}{p(z_n|x^o_n)} \\
&\ge \sum_n \mathbb{E}_{q(z_n|x_n^o)} \log p(x_n^o|z_n)
- \sum_n \mathrm{KL}(q(z_n|x_n^o)\| p(z_n)).
\end{array}
\]
其中\(p(x_n^o|z_n)=\prod_{d \in \mathcal{O}_n} p(x_{nd}|z_n)\).
网络结构
从上面的假设就可以看出, 整体的VAE的结构是这样的:
- 观测数据\(x^o\)经过encoder得到\(\mu_q(x^o), \Sigma_q(x^o)\), 并从高斯分布中采样得到\(z\).
- 隐变量\(z\)经过独立的网络\(h_1, \cdots, h_d\)得到预测的数据\(\gamma_1, \gamma_2, \cdots, \gamma_d\), 这些用于构建各自的分布\(p(x_d|\gamma_d)\), 这个分布是数据的类型而不同.
不同的数据
这对不同的数据类型, 可以假设不同的分布\(p(x_d|\gamma_d)\), 这我认为是非常有趣的一个点.
- 如果\(x_d\)是实值变量, 则可以假设其为高斯分布:
\]
- 如果\(x_d \in \mathbb{R}^+\), 则
\]
- \(x_d \in \{0, 1, 2, \cdots \}\), 则假设poisson分布:
= \frac{\lambda_d(z)^{x_d} \exp (-\lambda_d(z_n))}{x_d!}.
\]
- 类别数据, \(\gamma_d \in \{h_{d0}(z), \cdots, h_{d(R-1)}(z)\}\)此时为logits, 最后的概率分布
\]
- Ordinal data
\]
其中
\]
HI-VAE
上述的假设有些过于强了, 为此, 作者做出了一些调整.

- 假设一个了一个混合的高斯先验: \(p(z|s_n)\);
- 隐变量需要先经过一个共同的变化得到\(Y_n\)再和\(s_n\)一起经过独立的网络得到\(\gamma_1, \gamma_2, \cdots, \gamma_d\).
个人感觉第二点的设计还是不错的.
代码
Handing Incomplete Heterogeneous Data using VAEs的更多相关文章
- RFC destination fails with error Incomplete Logon Data after system copy
1. 问题现象 1.1在system copy后,提示RFC报错Unable to configure STMS 2. 重要的参考文件: 2.1RFC passwords not available ...
- Interviews3D: APlatform for Interactive Handing of Massive Data Sets 读后感
横向比较: Inadequacy of current system design( 现代系统和一些软件的不足) 软件特点: Output sensitivity Out-of core data h ...
- Toward Scalable Systems for Big Data Analytics: A Technology Tutorial (I - III)
ABSTRACT Recent technological advancement have led to a deluge of data from distinctive domains (e.g ...
- MySQL vs. MongoDB: Choosing a Data Management Solution
原文地址:http://www.javacodegeeks.com/2015/07/mysql-vs-mongodb.html 1. Introduction It would be fair to ...
- Opaque data type--不透明类型
Opaque:对使用者来说,类型结构和机制明晰即为transparent,否则为Opaque In computer science, an opaque data type is a data ty ...
- 论文翻译:Data mining with big data
原文: Wu X, Zhu X, Wu G Q, et al. Data mining with big data[J]. IEEE transactions on knowledge and dat ...
- Understanding Variational Autoencoders (VAEs)
Understanding Variational Autoencoders (VAEs) 2019-09-29 11:33:18 This blog is from: https://towards ...
- (转) [it-ebooks]电子书列表
[it-ebooks]电子书列表 [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...
- Magic Quadrant for Security Information and Event Management
https://www.gartner.com/doc/reprints?id=1-4LC8PAW&ct=171130&st=sb Summary Security and risk ...
随机推荐
- A Child's History of England.32
And so, in darkness and in prison, many years, he thought of all his past life, of the time he had w ...
- JmxTest
package mbeanTest; import java.util.Set; import javax.management.Attribute; import javax.management. ...
- Python 基于python实现的http+json协议接口自动化测试框架源码(实用改进版)
目录 1. 写在前面 2. 开发环境 3. 大致流程 4. 框架简介 5. 运行结果展示 6. 文件与配置 7. 测试接口实例 n ...
- HelloWorldDynamic
package mbeanTest; import java.lang.reflect.Method; import javax.management.Attribute; import javax. ...
- Linux基础命令---smbpasswd管理samba密码
smbpasswd smbpasswd指令可以用来修改samba用户的的密码,该指令不仅可以修改本地samba服务器的用户密码,还可以修改远程samba服务器的用户密码. 此命令的适用范围:RedHa ...
- 接口测试 python+PyCharm 环境搭建
1.配置Python环境变量 a:我的电脑->属性->高级系统设置->环境变量->系统变量中的PATH变量. 变量名:PATH 修改变量值为:;C:\Python27 ...
- 关于java构造器
关于java的构造器.首先构造器并不会创建java对象,构造器知识负责执行初始化,在构造器执行之前,Java对象所需要的内存空间是由new关键字申请出来的.大部分时候,程序使用new关键字为一个Jav ...
- CSS font-size: 0去除内联元素空白间隙
我们在编写HTML标签的时候,通常会使用换行,缩进来保证代码的可读性.同时,在编写CSS样式的时候,也会需要把一些元素设置为inline或inline-block.这样一来,有时在页面中会出现意外的空 ...
- 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...
- 开发中Design Review和Code Review
一.Design Review 详解 翻译为设计评审,也就是对需求设计进行审核,防止出现异常问题,例如下面的这些 可用性 外部依赖有哪些?如果这些外部依赖崩溃了我们有什么处理措施? 我们SLA是什么? ...