Nazabal A., Olmos P., Ghahramani Z. and Valera I.

Handing incomplete heterogeneous data using VAEs.

Pattern Recognition, 2020, 107: 107501.

这篇文章利用VAE处理缺失数据, 以往的对缺失数据的处理往往是不区分连续离散, 数字符号的, 感觉这里利用分布的处理方式非常精彩.

主要内容

ELBO

首先, 既然是利用VAE, 那么就需要推导出相应的ELBO来.

文章首先假设数据\(x\)和隐变量之间关系满足:

\[p(x_n, z_n) = p(z_n) \prod_d p(x_{nd}|z_n),
\]

即\(x_n\)的各分量关于\(z_n\)的条件独立的.

进一步引入观测数据\(x^o\)和\(x^m\), 即

\[x^o_{nd} =
\left \{
\begin{array}{ll}
x_{nd}, & d \in \mathcal{O}_n \\
0, & d \in \mathcal{M}_n
\end{array}
\right ., \\
x^{m}_n = x_n - x_{n}^o.
\]

其中\(\mathcal{O}, \mathcal{M}\) 分别是观测的元素和缺失的元素位置, 且彼此是互斥的.

那么

\[p(x_n|z_n) = \prod_{d \in \mathcal{O}_n} p(x_{nd}|z_n) \prod_{d \in \mathcal{M}_n} p(x_{nd}|z_n).
\]
\[q(z_n, x_n^m|x_n^o) = q(z_n|x_n^o) \prod_{d \in \mathcal{M}_n} p(x_{nd}|z_n).
\]

则通过极大似然即可推出ELBO:

\[\begin{array}{ll}
\log p(X^o)
&= \sum_{n} \mathbb{E}_{q(z_n|x_n^o)} \log \frac{p(x_n^o, z_n)}{q(z_n|x_n^o)} \frac{q(z_n|x_n^o)}{p(z_n|x^o_n)} \\
&\ge \sum_n \mathbb{E}_{q(z_n|x_n^o)} \log p(x_n^o|z_n)
- \sum_n \mathrm{KL}(q(z_n|x_n^o)\| p(z_n)).
\end{array}
\]

其中\(p(x_n^o|z_n)=\prod_{d \in \mathcal{O}_n} p(x_{nd}|z_n)\).

网络结构

从上面的假设就可以看出, 整体的VAE的结构是这样的:

  1. 观测数据\(x^o\)经过encoder得到\(\mu_q(x^o), \Sigma_q(x^o)\), 并从高斯分布中采样得到\(z\).
  2. 隐变量\(z\)经过独立的网络\(h_1, \cdots, h_d\)得到预测的数据\(\gamma_1, \gamma_2, \cdots, \gamma_d\), 这些用于构建各自的分布\(p(x_d|\gamma_d)\), 这个分布是数据的类型而不同.

不同的数据

这对不同的数据类型, 可以假设不同的分布\(p(x_d|\gamma_d)\), 这我认为是非常有趣的一个点.

  1. 如果\(x_d\)是实值变量, 则可以假设其为高斯分布:
\[p(x_d|\gamma_d) = \mathcal{N} (x_d|\mu_d(z), \sigma_d^2(z)).
\]
  1. 如果\(x_d \in \mathbb{R}^+\), 则
\[\log p(x_d|\gamma_d) = \mathcal{N} (x_d|\mu_d(z), \sigma_d^2(z)), x_d \ge 0.
\]
  1. \(x_d \in \{0, 1, 2, \cdots \}\), 则假设poisson分布:
\[p(x_d|\gamma_d) = \mathrm{Poiss}(x_d|\lambda(z))
= \frac{\lambda_d(z)^{x_d} \exp (-\lambda_d(z_n))}{x_d!}.
\]
  1. 类别数据, \(\gamma_d \in \{h_{d0}(z), \cdots, h_{d(R-1)}(z)\}\)此时为logits, 最后的概率分布
\[p(x_d = r|\gamma_d) = \frac{\exp (-h_{dr}(z))}{\sum_r \exp (-h_{dr}(z))}
\]
  1. Ordinal data
\[p(x_d = r | \gamma_d) = p(x_d \le r|\gamma_d)-p(x_d \le r-1|\gamma_d),
\]

其中

\[p(x_d \le r|\gamma_d) = \frac{1}{1 + \exp (-(\theta_r(z)- h_d(z)))}.
\]

HI-VAE

上述的假设有些过于强了, 为此, 作者做出了一些调整.

  1. 假设一个了一个混合的高斯先验: \(p(z|s_n)\);
  2. 隐变量需要先经过一个共同的变化得到\(Y_n\)再和\(s_n\)一起经过独立的网络得到\(\gamma_1, \gamma_2, \cdots, \gamma_d\).

个人感觉第二点的设计还是不错的.

代码

原文代码

Handing Incomplete Heterogeneous Data using VAEs的更多相关文章

  1. RFC destination fails with error Incomplete Logon Data after system copy

    1. 问题现象 1.1在system copy后,提示RFC报错Unable to configure STMS 2.  重要的参考文件: 2.1RFC passwords not available ...

  2. Interviews3D: APlatform for Interactive Handing of Massive Data Sets 读后感

    横向比较: Inadequacy of current system design( 现代系统和一些软件的不足) 软件特点: Output sensitivity Out-of core data h ...

  3. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial (I - III)

    ABSTRACT Recent technological advancement have led to a deluge of data from distinctive domains (e.g ...

  4. MySQL vs. MongoDB: Choosing a Data Management Solution

    原文地址:http://www.javacodegeeks.com/2015/07/mysql-vs-mongodb.html 1. Introduction It would be fair to ...

  5. Opaque data type--不透明类型

    Opaque:对使用者来说,类型结构和机制明晰即为transparent,否则为Opaque In computer science, an opaque data type is a data ty ...

  6. 论文翻译:Data mining with big data

    原文: Wu X, Zhu X, Wu G Q, et al. Data mining with big data[J]. IEEE transactions on knowledge and dat ...

  7. Understanding Variational Autoencoders (VAEs)

    Understanding Variational Autoencoders (VAEs) 2019-09-29 11:33:18 This blog is from: https://towards ...

  8. (转) [it-ebooks]电子书列表

    [it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...

  9. Magic Quadrant for Security Information and Event Management

    https://www.gartner.com/doc/reprints?id=1-4LC8PAW&ct=171130&st=sb Summary Security and risk ...

随机推荐

  1. day01 MySQL发展史

    day01 MySQL发展史 今日内容概要 数据库演变史 软件开发架构 数据库本质 数据库中的重要概念 MySQL下载与安装 基本SQL语句 今日内容详细 数据库演变史 # 1.文件操作阶段 jaso ...

  2. Learning Spark中文版--第五章--加载保存数据(1)

      开发工程师和数据科学家都会受益于本章的部分内容.工程师可能希望探索更多的输出格式,看看有没有一些适合他们下游用户的格式.数据科学家可能会更关注他们已经使用的数据格式. Motivation   我 ...

  3. flink03-----1.Task的划分 2.共享资源槽 3.flink的容错

    1. Task的划分 在flink中,划分task的依据是发生shuffle(也叫redistrubute),或者是并行度发生变化 1.  wordcount为例 package cn._51doit ...

  4. 链栈(C++)

    链栈,字面意思,就是用链表来实现一个栈的数据结构. 那么,只需将单链表的头节点当作栈顶,尾节点当作栈底.入栈只需要头插,出栈只需头删即可.所以只需要吧单链表稍微阉割一下就可以得到链式栈了.代码如下 / ...

  5. oracle 锁查询

    --v$lock中 id1 在锁模式是 TX 时保存的是 实物id 的前2段SELECT * FROM (SELECT s.SID, TRUNC(id1 / power(2, 16)) rbs, bi ...

  6. sqlserver 各种判断是否存在(表、视图、函数、存储过程等)

    1.判断表是否存在 select * from sysobjects where id = object_id(表名) and OBJECTPROPERTY(id, N'IsUserTable') = ...

  7. 【Java 基础】 instanceof和isInstance区别详解

    obj instanceof class 也就是说这个对象是不是这种类型, 1.一个对象是本身类的一个对象 2.一个对象是本身类父类(父类的父类)和接口(接口的接口)的一个对象 3.所有对象都是Obj ...

  8. JSP常用内置对象

    1.request 1.1getAttribute(String name) 2.getAttributeName() 3.getCookies() 4.getCharacterEncoding() ...

  9. Vector Bin Packing 华为讲座笔记

    Vector bin packing:first fit / best fit / grasp 成本:性价比 (先验) 设计评价函数: evaluation function:cosine simil ...

  10. 数据脱敏 t-closeness介绍与实现

    数据脱敏 t-closeness介绍与实现 本文主要基于t-closeness的首次提出团队Ninghui Li, Tiancheng Li, Suresh Venkatasubramanian发表的 ...