Anti-prime Sequences
| Time Limit: 3000MS | Memory Limit: 30000K | |
| Total Submissions: 3355 | Accepted: 1531 |
Description
We can extend the definition by defining a degree danti-prime
sequence as one where all consecutive subsequences of length 2,3,...,d
sum to a composite number. The sequence above is a degree 2 anti-prime
sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11.
The lexicographically .rst degree 3 anti-prime sequence for these
numbers is 1,3,5,4,6,2,10,8,7,9.
Input
will consist of multiple input sets. Each set will consist of three
integers, n, m, and d on a single line. The values of n, m and d will
satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0
0 will indicate end of input and should not be processed.
Output
each input set, output a single line consisting of a comma-separated
list of integers forming a degree danti-prime sequence (do not insert
any spaces and do not split the output over multiple lines). In the case
where more than one anti-prime sequence exists, print the
lexicographically first one (i.e., output the one with the lowest first
value; in case of a tie, the lowest second value, etc.). In the case
where no anti-prime sequence exists, output
No anti-prime sequence exists.
Sample Input
1 10 2
1 10 3
1 10 5
40 60 7
0 0 0
Sample Output
1,3,5,4,2,6,9,7,8,10
1,3,5,4,6,2,10,8,7,9
No anti-prime sequence exists.
40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
题意:在【2,d】长度的连续序列的和都要为合数。
思路:DFS。
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 #include<queue>
7 #include<stack>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 bool prime[20000]= {0};
12 int tt[10000];
13 bool cm[1005];
14 int ts=0;
15 bool check(int n,int m);
16 int dfs(int n,int m,int d,int kk,int pp);
17 int main(void)
18 {
19 int i,j,k;
20 for(i=2; i<=1000; i++)
21 {
22 if(!prime[i])
23 {
24 for(j=i; (i*j)<=20000; j++)
25 {
26 prime[i*j]=true;
27 }
28 }
29 }
30 int n,m;
31 while(scanf("%d %d %d",&n,&m,&k),n!=0&&m!=0&&k!=0)
32 {
33 memset(cm,0,sizeof(cm));
34 ts=0;
35 int uu=dfs(0,m-n+1,k,n,m);
36 if(uu)
37 {
38 printf("%d",tt[0]);
39 for(i=1; i<(m-n+1); i++)
40 {
41 printf(",%d",tt[i]);
42 }
43 printf("\n");
44 }
45 else printf("No anti-prime sequence exists.\n");
46 }
47 }
48 bool check(int n,int m)
49 {
50 int i,j;
51
52
53 LL sum=tt[m];
54 for(i=m-1; i>=max(n,0); i--)
55 {
56 sum+=tt[i];
57 if(!prime[sum])
58 return false;
59 }
60 return true;
61 }
62 int dfs(int n,int m,int d,int kk,int pp)
63 {
64 int i;
65 if(ts)return 1;
66 if(n==m)
67 {
68
69 bool cc=check(n-d,m-1);
70 if(!cc)
71 {
72 return 0;
73 }
74 ts=1;
75 return 1;
76 }
77 else
78 {
79 bool cc=check(n-d,n-1);
80 if(cc)
81 {
82 for(i=kk; i<=pp; i++)
83 {
84 if(ts)return 1;
85 if(!cm[i])
86 {
87 tt[n]=i;
88 cm[i]=true;
89 int uu=dfs(n+1,m,d,kk,pp);
90 cm[i]=false;
91 if(uu)return 1;
92 }
93 }
94 }
95 else return 0;
96 }
97 return 0;
98 }
Anti-prime Sequences的更多相关文章
- Who Gets the Most Candies?(线段树 + 反素数 )
Who Gets the Most Candies? Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%I64d &am ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- DFS(8)——poj2034Anti-prime Sequences
一.题目回顾 题目链接:Anti-prime Sequences Sample Input 1 10 2 1 10 3 1 10 5 40 60 7 0 0 0 Sample Output 1,3 ...
- 河南省第十届省赛 Binary to Prime
题目描述: To facilitate the analysis of a DNA sequence, a DNA sequence is represented by a binary num ...
- Farey sequences
n阶的法里数列是0和1之间最简分数的数列,由小至大排列,每个分数的分母不大于n. Stern-Brocot树(SB Tree)可以生成这个序列 {0/1,1/1} {0/1,1/2,1/1} {0/1 ...
- Java 素数 prime numbers-LeetCode 204
Description: Count the number of prime numbers less than a non-negative number, n click to show more ...
- Prime Generator
Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...
- ABP Zero示例项目登录报错“Empty or invalid anti forgery header token.”问题解决
ABP Zero项目,登录时出现如图"Empty or invalid anti forgery header token."错误提示的解决方法: 在 WebModule.cs的P ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
随机推荐
- .NET Core基础篇之:集成Swagger文档与自定义Swagger UI
Swagger大家都不陌生,Swagger (OpenAPI) 是一个与编程语言无关的接口规范,用于描述项目中的 REST API.它的出现主要是节约了开发人员编写接口文档的时间,可以根据项目中的注释 ...
- Yarn 生产环境核心配置参数
目录 Yarn 生产环境核心配置参数 ResourceManager NodeManager Container Yarn 生产环境核心配置参数 ResourceManager 配置调度器 yarn. ...
- day10设置文件权限
day10设置文件权限 yum复习 1.修改IP [root@localhost ~]# sed -i 's#.200#.50#g' /etc/sysconfig/network-scripts/if ...
- eclipse上点击open Perspective找不到java EE的解决办法
原因:没有安装java ee等插件 Help--->Install New software---->work with中选择All Available Sites----> ...
- css clip样式 属性功能及作用
clip clip 在学前端的小伙伴前,估计是很少用到的,代码中也是很少看见的,但是,样式中有这样的代码,下面让我们来讲讲他吧! 这个我也做了很久的开发没碰到过这个属性,知道我在一个项目中,有一个功能 ...
- ClassLoader.loadClass()与Class.forName()的区别《 转》
ClassLoader.loadClass()与Class.forName()区别: ClassLoader.loadClass()与Class.forName()大家都知道是反射用来构造类的方法,但 ...
- Spring Boot项目的不同启动方式
方式一: 直接通过IntelliJ IDEA启动,直接执行Spring Boot项目的main()方法. 方法二: 将项目打包成jar包,首先需要在pom.xml文件的根节点下添加如下配置: < ...
- thinkphp引入PHPExcel类---thinkPHP类库扩展-----引入没有采用命名空间的类库
最近项目中遇到引入PHPExcel第三方类库 但是下载的phpExcel类没有命名空间,而且所有接口文件的命名都是以.php结尾 而不是tp中的.class.php 解决办法很简单:在引入没有采用命 ...
- Decorator 模式转载
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://tianli.blog.51cto.com/190322/35287 摘要:本文深 ...
- 网络安全:关于SecOC及测试开发实践简介
前言 我们知道,在车载网络中,大部分的数据都是以明文方式广播发送且无认证接收.这种方案在以前有着低成本.高性能的优势,但是随着当下智能网联化的进程,这种方案所带来的安全问题越来越被大家所重视. 为了提 ...