Anti-prime Sequences
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 3355   Accepted: 1531

Description

Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence.


We can extend the definition by defining a degree danti-prime
sequence as one where all consecutive subsequences of length 2,3,...,d
sum to a composite number. The sequence above is a degree 2 anti-prime
sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11.
The lexicographically .rst degree 3 anti-prime sequence for these
numbers is 1,3,5,4,6,2,10,8,7,9.

Input

Input
will consist of multiple input sets. Each set will consist of three
integers, n, m, and d on a single line. The values of n, m and d will
satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0
0 will indicate end of input and should not be processed.

Output

For
each input set, output a single line consisting of a comma-separated
list of integers forming a degree danti-prime sequence (do not insert
any spaces and do not split the output over multiple lines). In the case
where more than one anti-prime sequence exists, print the
lexicographically first one (i.e., output the one with the lowest first
value; in case of a tie, the lowest second value, etc.). In the case
where no anti-prime sequence exists, output



No anti-prime sequence exists.

Sample Input

1 10 2
1 10 3
1 10 5
40 60 7
0 0 0

Sample Output

1,3,5,4,2,6,9,7,8,10
1,3,5,4,6,2,10,8,7,9
No anti-prime sequence exists.
40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
题意:在【2,d】长度的连续序列的和都要为合数。
思路:DFS。
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 #include<queue>
7 #include<stack>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 bool prime[20000]= {0};
12 int tt[10000];
13 bool cm[1005];
14 int ts=0;
15 bool check(int n,int m);
16 int dfs(int n,int m,int d,int kk,int pp);
17 int main(void)
18 {
19 int i,j,k;
20 for(i=2; i<=1000; i++)
21 {
22 if(!prime[i])
23 {
24 for(j=i; (i*j)<=20000; j++)
25 {
26 prime[i*j]=true;
27 }
28 }
29 }
30 int n,m;
31 while(scanf("%d %d %d",&n,&m,&k),n!=0&&m!=0&&k!=0)
32 {
33 memset(cm,0,sizeof(cm));
34 ts=0;
35 int uu=dfs(0,m-n+1,k,n,m);
36 if(uu)
37 {
38 printf("%d",tt[0]);
39 for(i=1; i<(m-n+1); i++)
40 {
41 printf(",%d",tt[i]);
42 }
43 printf("\n");
44 }
45 else printf("No anti-prime sequence exists.\n");
46 }
47 }
48 bool check(int n,int m)
49 {
50 int i,j;
51
52
53 LL sum=tt[m];
54 for(i=m-1; i>=max(n,0); i--)
55 {
56 sum+=tt[i];
57 if(!prime[sum])
58 return false;
59 }
60 return true;
61 }
62 int dfs(int n,int m,int d,int kk,int pp)
63 {
64 int i;
65 if(ts)return 1;
66 if(n==m)
67 {
68
69 bool cc=check(n-d,m-1);
70 if(!cc)
71 {
72 return 0;
73 }
74 ts=1;
75 return 1;
76 }
77 else
78 {
79 bool cc=check(n-d,n-1);
80 if(cc)
81 {
82 for(i=kk; i<=pp; i++)
83 {
84 if(ts)return 1;
85 if(!cm[i])
86 {
87 tt[n]=i;
88 cm[i]=true;
89 int uu=dfs(n+1,m,d,kk,pp);
90 cm[i]=false;
91 if(uu)return 1;
92 }
93 }
94 }
95 else return 0;
96 }
97 return 0;
98 }

Anti-prime Sequences的更多相关文章

  1. Who Gets the Most Candies?(线段树 + 反素数 )

    Who Gets the Most Candies? Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%I64d &am ...

  2. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  3. DFS(8)——poj2034Anti-prime Sequences

    一.题目回顾 题目链接:Anti-prime Sequences Sample Input 1 10 2 1 10 3 1 10 5 40 60 7 0 0 0   Sample Output 1,3 ...

  4. 河南省第十届省赛 Binary to Prime

    题目描述: To facilitate the analysis of  a DNA sequence,  a DNA sequence is represented by a binary  num ...

  5. Farey sequences

    n阶的法里数列是0和1之间最简分数的数列,由小至大排列,每个分数的分母不大于n. Stern-Brocot树(SB Tree)可以生成这个序列 {0/1,1/1} {0/1,1/2,1/1} {0/1 ...

  6. Java 素数 prime numbers-LeetCode 204

    Description: Count the number of prime numbers less than a non-negative number, n click to show more ...

  7. Prime Generator

    Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...

  8. ABP Zero示例项目登录报错“Empty or invalid anti forgery header token.”问题解决

    ABP Zero项目,登录时出现如图"Empty or invalid anti forgery header token."错误提示的解决方法: 在 WebModule.cs的P ...

  9. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

随机推荐

  1. .NET Core基础篇之:集成Swagger文档与自定义Swagger UI

    Swagger大家都不陌生,Swagger (OpenAPI) 是一个与编程语言无关的接口规范,用于描述项目中的 REST API.它的出现主要是节约了开发人员编写接口文档的时间,可以根据项目中的注释 ...

  2. Yarn 生产环境核心配置参数

    目录 Yarn 生产环境核心配置参数 ResourceManager NodeManager Container Yarn 生产环境核心配置参数 ResourceManager 配置调度器 yarn. ...

  3. day10设置文件权限

    day10设置文件权限 yum复习 1.修改IP [root@localhost ~]# sed -i 's#.200#.50#g' /etc/sysconfig/network-scripts/if ...

  4. eclipse上点击open Perspective找不到java EE的解决办法

    原因:没有安装java ee等插件 Help--->Install New software---->work  with中选择All Available  Sites---->  ...

  5. css clip样式 属性功能及作用

    clip clip 在学前端的小伙伴前,估计是很少用到的,代码中也是很少看见的,但是,样式中有这样的代码,下面让我们来讲讲他吧! 这个我也做了很久的开发没碰到过这个属性,知道我在一个项目中,有一个功能 ...

  6. ClassLoader.loadClass()与Class.forName()的区别《 转》

    ClassLoader.loadClass()与Class.forName()区别: ClassLoader.loadClass()与Class.forName()大家都知道是反射用来构造类的方法,但 ...

  7. Spring Boot项目的不同启动方式

    方式一: 直接通过IntelliJ IDEA启动,直接执行Spring Boot项目的main()方法. 方法二: 将项目打包成jar包,首先需要在pom.xml文件的根节点下添加如下配置: < ...

  8. thinkphp引入PHPExcel类---thinkPHP类库扩展-----引入没有采用命名空间的类库

    最近项目中遇到引入PHPExcel第三方类库 但是下载的phpExcel类没有命名空间,而且所有接口文件的命名都是以.php结尾  而不是tp中的.class.php 解决办法很简单:在引入没有采用命 ...

  9. Decorator 模式转载

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://tianli.blog.51cto.com/190322/35287 摘要:本文深 ...

  10. 网络安全:关于SecOC及测试开发实践简介

    前言 我们知道,在车载网络中,大部分的数据都是以明文方式广播发送且无认证接收.这种方案在以前有着低成本.高性能的优势,但是随着当下智能网联化的进程,这种方案所带来的安全问题越来越被大家所重视. 为了提 ...