Codeforces Global Round 14 E. Phoenix and Computers
题目链接
题目大意
给定 \(N\) 台电脑,起初每台电脑都是关闭的
现在你可以随意打开电脑,但如果第 \(i-1\)、第 \(i+1\) 台电脑是开启的,则第 \(i\) 台电脑也会自动开启,而你无法手动开启它
问你有多少种打开电脑的方法,使得最后所有电脑都是开着的
解题思路
分成两步来解决.
第一步:
考虑:如果 \(N\) 台电脑我都要手动开启,有多少种方法?
可以枚举是从哪台电脑开始打开:
- 从 \(1\) 开始,剩下的 \(N-1\) 必须按照 \(2,3,...,n\) 的顺序开(不理解可以画一下)
- 从 \(2\) 开始,对于 \(2\) 左边的电脑 \([3\)~\(N]\),\(4\) 必须在 \(3\) 开了之后开,\(5\) 必须在 \(4\) 开了之后开 \(...\) ,而 \(1\) 可以在任意时刻开机
- \(...\)
- 从 \(k\) 开始开,对于 \(k\) 左边的电脑, 它们的相对开机顺序必须是 \(k + 1 , k + 2 , ... , n\)
对于\(k\) 右边的电脑,它们的相对开机顺序必须是 \(k-1,k-2,...,1\)
不过左右两边的开机顺序是可以穿插在一起的
所以手动开启 \(N\) 台电脑的方案数为 \(C_{n-1}^{1}+C_{n-1}^{2}+\ldots +C_{n-1}^{n-1} = 2^{n-1}\)
第二步:
考虑:最后电脑开启的状态?
显然最后电脑开启的状态会是这样的:
手动开启 \(1\sim X_1\) → 自动开启 \(X_1+1\) → 手动开启 \(X_1+2\sim X2\) 台 →自动开启 \(X_2+1\) → \(...\) → 手动开启 \(X_{n-1} + 1\sim X_n\) ,其中需要保证 \(X_i + 1 < N\)
于是我们可以定义 \(f[i][j]\) 表示:前 \(i\) 台电脑,手动打开 \(j\) 台, 第 \(i\) 台是手动打开 ,
第 \(i + 1\) 台是自动打开的方案数那么 \(f[i][j]\) → \(f[i + 1 + K][j + X_i]\) 的意义为:
手动打开 \(pos \sim i\) → 自动打开\(i+1\) → 手动打开 \(i + 2 \sim X_i\) 的过程
- \(f[i+1+X_i][j+X_i]\) 相对 \(f[i][j]\) 又多手动开启了 \(X_i\) 台电脑
- 这 \(X_i\) 台的电脑的开启方案数有 \(2^{Xi-1}\)种(第一步得出的结论)
- 然后考虑将这 \(X_i\) 台"新"电脑开机的顺序和 \(j\) 台"旧"电脑开机的顺序合并。
即现在有 \(X_i+j\) 个开机顺序需要确认,我们可以从中选 \(X_i\) 个放"新"电脑的开机顺序,剩下的放"旧"电脑的开机顺序,那么方案数为 \(C_{X_i+j}^{X_i}\) (或者 \(C_{X_i+j}^{j}\)也可以)所以可得: \(f[i + 1 + X_i][j + X_i] = f[i][j] \times 2^{Xi-1} \times C[j + X_i][X_i]\)
答案即: $ans=\sum ^{n}_{i=0}f\left[ n\right] \left[ i\right] $
\(i\)、\(j\)、\(X_i\) 都可以通过枚举得到
写题解不易,如有帮助到您请点个赞给予我一点小小的鼓励!
AC_Code
#include<bits/stdc++.h>
using namespace std;
const int N = 4e2 + 10;
long long C[N][N] , bit[N];
long long n , m , ans , f[N][N];
void init(int mod)
{
bit[0] = 1;
for(int i = 1 ; i <= N - 10 ; i ++) bit[i] = bit[i - 1] * 2 % mod;
for(int i = 0 ; i <= N - 10 ; i ++)
{
C[i][0] = 1;
for(int j = 1 ; j <= i ; j ++) C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
}
}
signed main()
{
cin >> n >> m;
init(m);
for(int i = 1 ; i <= n ; i ++)
{
f[i][i] = bit[i - 1];
for(int j = 0 ; j <= i ; j ++)
{
for(int k = 1 ; k + i + 1 <= n; k ++)
{
f[i + 1 + k][j + k] += f[i][j] * bit[k - 1] % m * C[j + k][k] % m;
f[i + 1 + k][j + k] %= m;
}
}
}
for(int i = 0 ; i <= n ; i ++) ans += f[n][i] , ans %= m;
cout << ans << '\n';
return 0;
}
Codeforces Global Round 14 E. Phoenix and Computers的更多相关文章
- [Codeforces Global Round 14]
打挺差的. 不过\(C,D\)一眼秒了,大概是对这几个月努力的一个结果? \(B\)玄学错误挂了两发. 脑子痛然后打到一半就去睡觉了. -------------------------------- ...
- CodeForces Global Round 1
CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...
- Codeforces Global Round 1 - D. Jongmah(动态规划)
Problem Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...
- Codeforces Beta Round #14 (Div. 2)
Codeforces Beta Round #14 (Div. 2) http://codeforces.com/contest/14 A 找最大最小的行列值即可 #include<bits/s ...
- Codeforces Global Round 2 题解
Codeforces Global Round 2 题目链接:https://codeforces.com/contest/1119 A. Ilya and a Colorful Walk 题意: 给 ...
- Codeforces Global Round 1 (A-E题解)
Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...
- Codeforces Global Round 3
Codeforces Global Round 3 A. Another One Bites The Dust 有若干个a,有若干个b,有若干个ab.你现在要把这些串拼成一个串,使得任意两个相邻的位置 ...
- Codeforces Global Round 1 (CF1110) (未完结,只有 A-F)
Codeforces Global Round 1 (CF1110) 继续补题.因为看见同学打了这场,而且涨分还不错,所以觉得这套题目可能会比较有意思. 因为下午要开学了,所以恐怕暂时不能把这套题目补 ...
- 【手抖康复训练1 】Codeforces Global Round 6
[手抖康复训练1 ]Codeforces Global Round 6 总结:不想复习随意打的一场,比赛开始就是熟悉的N分钟进不去时间,2333,太久没写题的后果就是:A 题手抖过不了样例 B题秒出思 ...
随机推荐
- ADT基础(二)—— Tree,Heap and Graph
ADT基础(二)-- Tree,Heap and Graph 1 Tree(二叉树) 先根遍历 (若二叉树为空,则退出,否则进行下面操作) 访问根节点 先根遍历左子树 先根遍历右子树 退出 访问顺序为 ...
- 构造方法和this的作用
一.构造方法概述 构造方法是一个特殊的方法 是创建对象时候调用的方法 方法的名字很特殊:必须和类名保持一致,大小写都要一样 方法没有返回值 方法也没有返回值类型 构造方法无法在外部手动调用 publi ...
- CCF(通信网络):简单DFS+floyd算法
通信网络 201709-4 一看到题目分析了题意之后,我就想到用floyd算法来求解每一对顶点的最短路.如果一个点和任意一个点都有最短路(不为INF),那么这就是符合的一个答案.可是因为题目超时,只能 ...
- 译文《全新首发JDK 16全部新特性》
封面:洛小汐 译者:潘潘 JDK 8 的新特性都还没摸透,JDK 16 的新特性就提着刀来了. 郑重申明: 第一次冒险翻译专业领域的文献,可想而知,效果特别糟糕.一般翻译文献特别是 技术专业领域 的内 ...
- CentOS安装libxml2报undefined reference to `gzopen64'
主要是记录一下安装时候踩的坑 CentOS在make libxml2的时候,会报这个错误 ./.libs/libxml2.so: undefined reference to `gzopen64' c ...
- Semaphore实战
简介 Semaphore信号量计数器.和CountDownLatch,CyclicBarrier类似,是多线程协作的工具类,相对于join,wait,notify方法使用起来简单高效.下面我们主要看看 ...
- 我与FreeBSD的故事之一
记得还是那些无聊的日子,群里有网友称Linux只能玩WPS,我表示质疑,并通过百度这个搜索引擎搜索到了Ubuntu Kylin,即由湖南的国防科技大学与Ubuntu社区合作并由其主导的Ubuntu麒麟 ...
- C# 应用 - 多线程 3) Task.Factory
1. 与 Task.Run() 的区别: 先看一下源码: public class Task : IThreadPoolWorkItem, IAsyncResult, IDisposable { pu ...
- [笔记] CRT & exCRT
[笔记] CRT & exCRT 构造法 求多组\(x \equiv r_i (\bmod d_i)\)的解,\(d_i\)互质 余数\((r_i = remainder)\),除数\((d_ ...
- 2020年Acm暑期考核Hznu _2797
题目链接:http://acm.hznu.edu.cn/OJ/problem.php?id=2797 题意:求1-N中有多少数字满足: x是正整数且无前导0. x(mod 666) = S(x). 6 ...
