CF1288
A
考虑\(x + 1 = \sqrt{d}\)时在有理域上有最优界。
那我在整数域上附近取三个点取min就行了。
// code by fhq_treap
#include<bits/stdc++.h>
#define ll long long
#define N 300005
inline ll read(){
char C=getchar();
ll A=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') A=(A << 1)+(A << 3)+(C - 48) , C=getchar();
return A*F;
}
template <typename T>
void write(T x)
{
if(x < 0) {
putchar('-');
x = -x;
}
if(x > 9)
write(x/10);
putchar(x % 10 + '0');
return;
}
int n,d,t;
int main(){
scanf("%d",&t);
while(t -- ){
scanf("%d%d",&n,&d);
int ans = d;
int k = sqrt(d);
ans = std::min(ans,(d + k - 1) / k + k - 1);
k ++ ;
ans = std::min(ans,(d + k - 1) / k + k - 1);
k -= 2;
if(k != 0)
ans = std::min(ans,(d + k - 1)/ k + k - 1);
puts((ans <= n) ? "Yes" : "No");
}
}
B
考虑枚举\(b\)的位数,然后发现\(b\)一定是 \(9999\) 这类的形式,而\(a\)可以随意取。
// code by fhq_treap
#include<bits/stdc++.h>
#define ll long long
#define N 300005
inline ll read(){
char C=getchar();
ll A=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') A=(A << 1)+(A << 3)+(C - 48) , C=getchar();
return A*F;
}
template <typename T>
void write(T x)
{
if(x < 0) {
putchar('-');
x = -x;
}
if(x > 9)
write(x/10);
putchar(x % 10 + '0');
return;
}
int t;
int main(){
scanf("%d",&t);
while(t -- ){
int a,b;
scanf("%d%d",&a,&b);
int k = 0,now = 9;
while(b >= now){
k++;
now = now * 10 + 9;
}
std::cout<<1ll * k * a<<std::endl;
}
}
C
直接暴力\(dp\),再利用前缀和优化到\(O(n^2)\)
// code by fhq_treap
#include<bits/stdc++.h>
#define ll long long
#define N 300005
#define mod ((ll)1e9 + 7)
inline ll read(){
char C=getchar();
ll A=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') A=(A << 1)+(A << 3)+(C - 48) , C=getchar();
return A*F;
}
template <typename T>
void write(T x)
{
if(x < 0) {
putchar('-');
x = -x;
}
if(x > 9)
write(x/10);
putchar(x % 10 + '0');
return;
}
//f[i][j][k] = \sum(f[i - 1][p][q](q <= k,p >= j,j <= k))
int f[1005][1005];
int g[1005][1005];
int n,m;
inline void got(){
int tmp = 0;
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
g[i][j] = 0;
for(int i = 1;i <= n;++i){
tmp = 0;
for(int j = n;j >= 1;--j){
tmp = (tmp + f[i][j]) % mod;
g[i][j] = g[i - 1][j];
g[i][j] = (g[i][j] + tmp) % mod;
}
}
}
int main(){
scanf("%d%d",&n,&m);
f[1][n] = 1;
got();
for(int i = 1;i <= m;++i){
for(int j = 1;j <= n;++j){
for(int k = j;k <= n;++k){
f[j][k] = g[j][k];
}
}
got();
}
std::cout<<g[n][1] % mod<<std::endl;
}
D
二分答案,将一个长度为 \(m\) 的数字序列转换为 \(01\) 序列。
可以获得这个答案则有两个\(01\)串或起来为全1串。
可以\(O({2^m}^2)\)做。
// code by fhq_treap
#include<bits/stdc++.h>
#define ll long long
#define N 300005
inline ll read(){
char C=getchar();
ll A=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') A=(A << 1)+(A << 3)+(C - 48) , C=getchar();
return A*F;
}
template <typename T>
void write(T x)
{
if(x < 0) {
putchar('-');
x = -x;
}
if(x > 9)
write(x/10);
putchar(x % 10 + '0');
return;
}
int n,m;
int a[300005][8];
int ansx = 1,ansy = 1;
int t[(1 << 9)];
inline bool check(int lim){
for(int i = 0;i < (1ll << m);++i)
t[i] = 0;
for(int i = 1;i <= n;++i){
int tmp = 0;
for(int j = 1;j <= m;++j){
if(a[i][j] >= lim)
tmp = tmp | (1ll << (j - 1));
}
t[tmp] = i;
}
for(int i = 0;i < (1ll << m);++i)
for(int j = 0;j < (1ll << m);++j){
if(((i | j) == ((1ll << m) - 1)) && (t[i]) && t[j]){
ansx = t[i];
ansy = t[j];
return 1;
}
}
return 0;
}
int main(){
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)
for(int j = 1;j <= m;++j){
scanf("%d",&a[i][j]);
}
int l = -1,r = 1e9;
#define mid ((l + r) >> 1)
while(l <= r){
if(check(mid))
l = mid + 1;
else
r = mid - 1;
}
l --;
while(check(l + 1))
l ++ ;
std::cout<<ansx<<" "<<ansy<<std::endl;
}
E
经典套路,前面留\(m\)个位置,用树状数组维护排名。
// code by fhq_treap
#include<bits/stdc++.h>
#define ll long long
#define N 300005
inline ll read(){
char C=getchar();
ll A=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') A=(A << 1)+(A << 3)+(C - 48) , C=getchar();
return A*F;
}
template <typename T>
void write(T x)
{
if(x < 0) {
putchar('-');
x = -x;
}
if(x > 9)
write(x/10);
putchar(x % 10 + '0');
return;
}
int n;
int a[N];
int minn[N],maxx[N];
int T[N << 2];
#define lowbit(x) (x & -x)
inline void add(int x,int p){
for(int i = x;i <= N << 2;i += lowbit(i))
T[i] += p;
}
inline int find(int x){
int ans = 0;
for(int i = x;i;i -= lowbit(i))
ans += T[i];
return ans;
}
int m,pos[N];
int main(){
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++i)
minn[i] = maxx[i] = i,pos[i] = m + i,add(pos[i],1);
int now = m;
for(int i = 1;i <= m;++i){
int k;
scanf("%d",&k);
minn[k] = 1;
maxx[k] = std::max(maxx[k],find(pos[k]));
add(pos[k],-1);
pos[k] = now -- ;
add(pos[k],1);
}
for(int i = 1;i <= n;++i){
maxx[i] = std::max(maxx[i],find(pos[i]));
std::cout<<minn[i]<<" "<<maxx[i]<<std::endl;
}
}
CF1288的更多相关文章
随机推荐
- Java(34)IO流之字符流
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228453.html 博客主页:https://www.cnblogs.com/testero ...
- javascript-原生-面向对象
1.javascript面向对象程序设计 概述:javascript不想其他面向对象编程语言那样有类的概念,javascript没有类(构造函数)的概念,只有对象的概念. 2.理解javascript ...
- 谜语人队 Scrum Meeting 博客汇总
项目 内容 课程主页 2021春季软件工程(罗杰 任健) 作业要求地址 Alpha阶段:团队项目-每日例会报告Beta阶段:团队项目-每日例会报告 团队博客主页 谜语人队 一.Alpha阶段 第一次例 ...
- [对对子队]会议记录5.15(Scrum Meeting2)
今天已完成的工作 吴昭邦 工作内容:衔接循环指令系统,搭建第4关 相关issue:实现循环组件 相关签入:feat: 将模型加入第四关 第四关可以顺利通过 何瑞 工作内容:衔接循环指令 ...
- UVA-1498 Activation
UVA-1498 DP应该是肯定的,设 f [ i ] [ j ] 表示现在对中共有 i 人,Tomato在第 j 个,出现所求情况的概率,我们可以很(简单的)艰难的列出下列方程: f[i][1] = ...
- pyqgis学习细节
关于LIKE通配符:LIKE的意思是模糊匹配,可以和% _搭配,%指的是任意字符,_指的是任一字符.
- Spring---IoC(控制反转)原理学习笔记【全】
1.IoC创建对象的方式 使用无参构造创建对象 假如要使用有参构造创建: 下标赋值constructor-arg <!--有参--> <bean id="User" ...
- hdu 5090 Game with Pearls (额,, 想法题吧 / 二分图最大匹配也可做)
题意: 给你N个数,a1,,,,an.代表第i个管子里有ai个珍珠. 规定只能往每根管里增加k的倍数个珍珠. 如果存在一套操作,操作完毕后可以得到1~N的一个排列,则Jerry赢,否则Tom赢. 问谁 ...
- etcd安装常用操作
etcd安装 etcd 是基于 Raft 的分布式 key-value 存储系统,由 CoreOS 开发,常用于服务发现.共享配置以及并发控制(如 leader 选举.分布式锁等).kubernete ...
- Obsidian中如何记录自己的灵感?
在生活中当中你是否会在某个瞬间产生一个想法,但没过多久就想不起来了,正所谓灵感转瞬即逝,那我们不妨在灵感出现的时候顺手将他记录下来.记录的过程要求简单.方便且不会花费我们太多时间,下面我们介绍一下如何 ...