令$b_{a_{i}}=i$,那么问题即要求$i$不是$b_{i}$的祖先,也即$b_{i}$不严格在$i$的子树中

显然$a_{i}$和$b_{i}$一一对应,因此我们不妨统计$b_{i}$的个数

考虑容斥,令$f(S)$为$\forall i\in S,b_{i}$严格在$i$子树中的排列数,根据容斥答案即$\sum_{S\subseteq [1,n]}(-1)^{|S|}f(S)$

关于$f(S)$,可以从底往上依次确定$i\in S$的$b_{i}$,方案数即$\prod_{i\in S}sz_{i}-\sum_{x\in S且x在i的子树中}1$(其中$sz_{i}$为$i$的子树大小),最后对于$i\not\in S$的$b_{i}$没有限制,即$(n-|S|)!$种

对于后者,可以在树形dp中记录,即令$f_{i,j}$表示以$i$为根的子树中$\sum_{x\in S且x在i的子树中}1=j$的排列数,最终不难得到答案即$\sum_{i=1}^{n}(-1)^{i}(n-i)!f_{1,i}$

转移方程即$f_{i,j+k}=\sum f_{i,j}f_{son,k}$,最终再将$i$加入$S$,即$f_{i,j}=f_{i,j}+(sz_{i}-j)f_{i,j-1}$

时间复杂度为$o(n^{2})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2005
4 #define mod 998244353
5 struct Edge{
6 int nex,to;
7 }edge[N];
8 int E,n,x,ans,head[N],sz[N],g[N],f[N][N];
9 void add(int x,int y){
10 edge[E].nex=head[x];
11 edge[E].to=y;
12 head[x]=E++;
13 }
14 void dfs(int k){
15 f[k][0]=1;
16 for(int i=head[k];i!=-1;i=edge[i].nex){
17 dfs(edge[i].to);
18 memcpy(g,f[k],sizeof(g));
19 memset(f[k],0,sizeof(f[k]));
20 for(int j=0;j<=sz[k];j++)
21 for(int l=0;l<=sz[edge[i].to];l++)f[k][j+l]=(f[k][j+l]+1LL*g[j]*f[edge[i].to][l])%mod;
22 sz[k]+=sz[edge[i].to];
23 }
24 sz[k]++;
25 for(int i=sz[k];i;i--)f[k][i]=(f[k][i]+1LL*(sz[k]-i)*f[k][i-1])%mod;
26 }
27 int main(){
28 scanf("%d",&n);
29 memset(head,-1,sizeof(head));
30 for(int i=2;i<=n;i++){
31 scanf("%d",&x);
32 add(x,i);
33 }
34 dfs(1);
35 for(int i=0;i<=n;i++){
36 int s=1;
37 if (i&1)s=mod-1;
38 for(int j=1;j<=n-i;j++)s=1LL*s*j%mod;
39 ans=(ans+1LL*s*f[1][i])%mod;
40 }
41 printf("%d",ans);
42 }

[atARC121E]Directed Tree的更多相关文章

  1. HDOJ 3516 Tree Construction

    四边形优化DP Tree Construction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  2. gym 100589A queries on the Tree 树状数组 + 分块

    题目传送门 题目大意: 给定一颗根节点为1的树,有两种操作,第一种操作是将与根节点距离为L的节点权值全部加上val,第二个操作是查询以x为根节点的子树的权重. 思路: 思考后发现,以dfs序建立树状数 ...

  3. hdu3516 Tree Construction

    Problem Description Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi & ...

  4. CodeForces 1062E Company

    Description The company \(X\) has \(n\) employees numbered from \(1\) through \(n\). Each employee \ ...

  5. CHANGE DETECTION IN ANGULAR 2

    In this article I will talk in depth about the Angular 2 change detection system. HIGH-LEVEL OVERVIE ...

  6. Codechef Dynamic Trees and Queries

    Home » Practice(Hard) » Dynamic Trees and Queries Problem Code: ANUDTQSubmit https://www.codechef.co ...

  7. Codeforces Round #603 (Div. 2) F. Economic Difficulties dp

    F. Economic Difficulties An electrical grid in Berland palaces consists of 2 grids: main and reserve ...

  8. [hdu6990]Directed Minimum Spanning Tree

    模板题:在有向图中,对每一个点求以其为根的最小(外向)生成树 (当图是强连通时)可以使用朱刘算法,算法过程如下: 1.对每一个节点,选择指向该点的边权最小的边,即得到一张子图 2.任选这张子图的一个简 ...

  9. Is It A Tree?[HDU1325][PKU1308]

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. 数据库InnoDB和MyISAMYSQL的区别

    1.nnoDB支持事务,MyISAM不支持,这一点是非常之重要.事务是一种高级的处理方式,如在一些列增删改中只要哪个出错还可以回滚还原,而MyISAM就不可以了. 2.MyISAM适合查询以及插入为主 ...

  2. Centos7 配置JDK 提示 /lib/ld-linux.so.2: bad ELF interpreter: No such file or direct

    解决办法:yum install glibc.i686

  3. 多图详解万星 Restful 框架原理与实现

    rest框架概览 我们先通过 go-zero 自带的命令行工具 goctl 来生成一个 api service,其 main 函数如下: func main() { flag.Parse() var ...

  4. c语言中一条竖线是什么符号?

    "|"在C语言中表示按位或,是双目运算符.其功能是参与运算的两数各对应的二进位(也就是最后一位)相或.只要对应的二个二进位有一个为1时,结果位就为1.参与运算的两个数均以补码出现. ...

  5. python字符串调用举例

    以如下打印为例: my name is tom and my age is 12 方式一:字符串格式化表达式 name = 'tom' age = 12 print("my name is ...

  6. 2021 从零开始学Git【新版本Git - 8000字详细介绍】

    我写的这篇文章,主要是记录自己的学习过程,也希望帮助读者少踩坑(比如不同版本可能命令不兼容等).本文面向git零基础初学者,建议读者按照文中命令自己全部操作一遍(注意运行环境). 我的运行环境:win ...

  7. [对对子队]会议记录4.10(Scrum Meeting 1)

    本次每日例会的开会时间是4月10日晚上20:00,使用腾讯会议作为开会工具. 今天已完成的工作 何瑞 ​ 工作内容:制作UI界面的指令编辑系统,已大致实现指令的衔接 ​ 相关issue:实现用户指令编 ...

  8. 【二食堂】Beta - Scrum Meeting 4

    Scrum Meeting 4 例会时间:5.17 18:30~18:50 进度情况 组员 当前进度 今日任务 李健 1. 继续完成文本区域划词添加的功能 issue 1. 划词功能已经实现,继续开发 ...

  9. kafka错误之 Topic xxx not present in metadata after 60000 ms

    Topic xxx not present in metadata after 60000 ms 一.背景 二.场景还原 1.jar包引入 2.jar代码 3.运行结果 三.问题解决 四.参考文档 一 ...

  10. Noip模拟13 2021.7.13:再刚题,就剁手&&生日祭

    T1 工业题 这波行列看反就非常尴尬.....口糊出所有正解想到的唯独行列看反全盘炸列(因为和T1斗智斗勇两个半小时...) 这题就是肯定是个O(n+m)的,那就往哪里想,a,b和前面的系数分开求,前 ...