对这棵树重心情况分类讨论:

1.若这棵树存在两个重心,分别记作$x$和$y$,如果将$(x,y)$断开,两棵子树大小都相同(都为$\frac{n}{2}$),此时$p_{i}$与$i$必然不同属于一个连通块中,证明如下:

考虑若$p_{i}$与$i$在一个连通块中,则必然有$p_{j}$和$j$也在同一个连通块中且与$i$不同,将其交换一定更优

将距离拆为两颗子树内部+$(x,y)$,即有$mx=2\sum dep_{i}(以(x,y)为根)+n$,方案数为$(\frac{n}{2}!)^{2}$

2.若这棵树仅有1个重心,类似于Distance Matching,若以重心为根,$mx=2\sum dep_{i}$

问题相当于要求任意$i$和$p_{i}$不在重心的同一个儿子中,考虑容斥,令集合$S$表示$i$和$p_{i}$在重心的同一个儿子中的$i$,$f_{S}$表示对应方案数

对$S$和$S$以外的的点分别计算(再相乘):

1.对$S$以外,考虑$i\in S$,其实可以将$p_{i}$理解为$i$,换言之将$p_{j}=i$的位置改为$p_{j}=p_{i}$即可,因此剩下的点任意排列,方案数为$(n-|S|)!$

2.对$S$以内,即从子树中选$i$个,即为$\prod_{son}a_{son}!c(sz_{son},a_{son})$($son$表示重心的儿子,$a_{son}$表示son子树内所选的节点个数)

由于$|S|=\sum_{son}a_{son}$,因此答案仅与$a_{i}$有关,对应答案为$(n-\sum_{son}a_{son})!\prod_{son}a_{son}!c(sz_{son},a_{son})^{2}$(对应的$|S|$有$\prod_{son}c(sz_{son},a_{son})$种)

令$f_{i}$表示当$\sum_{son}a_{son}=i$时$\prod_{son}c(sz_{son},a_{son})^{2}$的和,dp转移即可,时间复杂度为$o(n^{2})$(枚举子树和$a_{i}$的总量为$o(n)$),还可以用分治fft优化到$o(n\log^{2}n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 5005
4 #define mod 1000000007
5 struct ji{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v;
9 int E,n,m,x,y,ans,head[N],sz[N],fac[N],inv[N],f[N][N];
10 int sqr(int n){
11 return 1LL*n*n%mod;
12 }
13 int c(int n,int m){
14 return 1LL*fac[n]*inv[m]%mod*inv[n-m]%mod;
15 }
16 void add(int x,int y){
17 edge[E].nex=head[x];
18 edge[E].to=y;
19 head[x]=E++;
20 }
21 void dfs(int k,int fa){
22 int mx=0;
23 sz[k]=1;
24 for(int i=head[k];i!=-1;i=edge[i].nex)
25 if (edge[i].to!=fa){
26 dfs(edge[i].to,k);
27 mx=max(mx,sz[edge[i].to]);
28 sz[k]+=sz[edge[i].to];
29 }
30 if (max(mx,n-sz[k])<=n/2){
31 if (!x)x=k;
32 else y=k;
33 }
34 }
35 int main(){
36 fac[0]=inv[0]=inv[1]=1;
37 for(int i=1;i<N-4;i++)fac[i]=1LL*fac[i-1]*i%mod;
38 for(int i=2;i<N-4;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
39 for(int i=1;i<N-4;i++)inv[i]=1LL*inv[i]*inv[i-1]%mod;
40 scanf("%d",&n);
41 memset(head,-1,sizeof(head));
42 for(int i=1;i<n;i++){
43 scanf("%d%d",&x,&y);
44 add(x,y);
45 add(y,x);
46 }
47 x=y=0;
48 dfs(1,0);
49 if (y){
50 printf("%d",sqr(fac[n/2]));
51 return 0;
52 }
53 dfs(x,0);
54 v.push_back(0);
55 for(int i=head[x];i!=-1;i=edge[i].nex)v.push_back(sz[edge[i].to]);
56 m=v.size()-1;
57 f[0][0]=1;
58 int s=0;
59 for(int i=1;i<=m;i++){
60 for(int j=0;j<=s;j++)
61 for(int k=0;k<=v[i];k++)
62 f[i][j+k]=(f[i][j+k]+1LL*fac[k]*sqr(c(v[i],k))%mod*f[i-1][j])%mod;
63 s+=v[i];
64 }
65 assert(s==n-1);
66 for(int i=0;i<n;i++){
67 int s=1LL*f[m][i]*fac[n-i]%mod;
68 if (i&1)s=mod-s;
69 ans=(ans+s)%mod;
70 }
71 printf("%d",ans);
72 }

[atARC087F]Squirrel Migration的更多相关文章

  1. AT3728 Squirrel Migration

    AT3728 Squirrel Migration 就是给每个点分配两个匹配点(自环除外) 考虑最大值 考虑极限情况:每个边的贡献是min(sz[u],sz[v])*2 证明存在方案: 发现,如果哪边 ...

  2. [ARC087D] Squirrel Migration 补题记录

    题目链接 简要题意: 给你一个\(N\)个节点的树,求一个\(1\cdots N\)的排列\((p_1,p_2,\cdots p_N)\) ,使得\(\sum dist(i,p_i)\)最大. 求这样 ...

  3. Atcoder 乱做

    最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...

  4. 【AtCoder】ARC087

    C - Good Sequence 题解 用个map愉悦一下就好了 代码 #include <bits/stdc++.h> #define fi first #define se seco ...

  5. 写给.NET开发者的数据库Migration方案

    微软给我们提供了一种非常好用的数据库迁移方案,但是我发现周围的同学用的并不多,所以我还是想把这个方案整理一下..NET选手看过来,特别是还在通过手工执行脚本来迁移数据库的同学们,当然你也可以选择EF的 ...

  6. EF Core 数据库迁移(Migration)

    工具与环境介绍 1.开发环境为vs 2015 2.mysql EF Core支持采用  Pomelo.EntityFrameworkCore.MySql   源代码地址(https://github. ...

  7. Database first with EntityFramework (Migration)安装和升级

    最近看了国外几个项目,发现用EntityFramework做Code First的项目现在很流行. 最让我有兴趣的一个功能则是,EntityFramework对于数据库的安装和升级的无缝完美支持,且很 ...

  8. Squirrel: 通用SQL、NoSQL客户端

    安装 配置数据库 配置驱动 配置连接 如果你的工作中,需要使用到多个数据库,又不想在多种客户端之间切换来切换去.那么就需要找一款支持多数据库的客户端工具了.如果你要连接多个关系型数据库,你就可以使用N ...

  9. Laravel使用笔记 —— migration

    在使用 php artisan make:migration 创建migration时,可用 --path 指定创建migration文件的路径, 如果在执行的 php artisan migrate ...

随机推荐

  1. hdu3001(三进制状压)

    题目大意: 现在给你一个有n个点和m条边的图,每一条边都有一个费用,每个点不能经过超过两次,求所有点至少遍历一次的最小费用 其中n<=10 m没有明确限制(肯定不会超过1e5) 一看到这个数据范 ...

  2. CF468C Hack it! 超详细解答

    CF468C Hack it! 超详细解答 构造+数学推导 原文极简体验 CF468C Hack it! 题目简化: 令\(f(x)\)表示\(x\)在十进制下各位数字之和 给定一整数\(a\)构造\ ...

  3. C 标准库函数手册摘要

    <stdlib.h> int abs( int value ); long int labs( long int value ); 返回参数的绝对值 int rand( void ); v ...

  4. Windows 安装 gcc

    Windows 安装 gcc ① 官网下载 GCC, the GNU Compiler Collection - GNU Project - Free Software Foundation (FSF ...

  5. Pycharm无法打开,双击没反应

    以下方案皆为引用,仅供参考. 方案一: 1.先声明一下,这种解决方法适用于任何版本的永久破解启动不了的情况(包括:2019版本的)2.下面直接切入正题之所以我们破解之后,不能正常启动的原因有两种:① ...

  6. MySQL 8.0安装 + 配置环境变量 + 连接 cmd

    MySQL 安装教程 搜索 MySQL,进入官网,找到 download 点击适用于 window community 版本,点击图中第二个 450.7 M 的安装包进行下载 这里有五个选项,选择第二 ...

  7. 脚本:bat实现自动转换windows远程端口

    问题描述:通过一个脚本可以实现windows远程端口的转换,这个是拷贝过来学习的一个脚本 @echo off color f0 echo 修改远程桌面3389端口(支持Windows 2003 200 ...

  8. Flink 实践教程:入门(1):零基础用户实现简单 Flink 任务

    作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...

  9. Luogu P2024 [NOI2001]食物链 | 并查集

    题目链接 思路:并查集,因为一开始我们并不知道每一只动物是哪一个种类的,所以我们干脆建立三倍于n的空间,1~n这三分之一用来存第i只动物是A的情况,n+1~2n这三分之一用来存第(i-n)只动物是B的 ...

  10. docker 存储驱动(storage driver)知识总结

    http://www.sohu.com/a/101016494_116235 一,先看docker镜像是如何构建和存储. 下面是ubuntu:15.04的镜像分层.一共是4层,每一层都由一些只读并且描 ...