题意:给定一个长度为 \(n\) 的序列 \(A\),\(A_i \in [0, 2 ^ k)\)。定义 \(f(x)\) 为 \(A_1\) ^ \(x\),\(A_2\) ^ \(x \cdots\) \(A_n\) ^ \(x\) 这个序列的逆序对数量。现在将 \(x \in [0, 2 ^ k)\) 按照 \(f(x)\) 为第一关键字,\(x\) 为第二关键字从小到大排序,求排名为 \(p\) 的 \(f(x)\) 及 \(x\)。

\(n \le 5 \times 10 ^ 5, 0 \le k \le 30, 1 \le p \le 2 ^ k\)


简要题解如下:

  1. 考虑点对 \((i, j)(i < j)\) 对每个 \(f(x)\) 的贡献。

  2. 不难发现,找到 \(a_i, a_j\) 最高的不相同的位置 \(u\) 那么 \(a_i, a_j\) ^ \(x\) 后的大小关系只于 \(u\) 这一位的选择有关。

  3. 若 \(a_i < a_j\) 那么当且仅当 \(u\) 这位为 \(1\) 会造成贡献;否则 \(u\) 这位为 \(0\) 会造成贡献。

  4. 注意到枚举点对是 \(\mathcal{O(n ^ 2)}\) 级别的,考虑优化这个枚举的过程。

  5. 可以发现因为本质上是点对对答案造成的贡献,可以使用类似于 \(\rm CDQ\) 分治的做法来优化这个流程。

  6. 我们将在从高往低 \(u\) 这个位上不同的数分为两个集合,因为数组是按照排列顺序来的,于是可以 \(\mathcal{O(n)}\) 地计算出这一位的贡献。然后递归处理两个集合,复杂度 \(\mathcal{O(nk)}\)。

  7. 接下来考虑一个经典转化:二分答案,统计小于小于等于 \((f(x), x)\) 的数量个数。

  8. 统计时折半搜索,然后使用双指针优化即可减小一半的指数。

复杂度 \(\mathcal{O(k2 ^ {k / 2} + nk)}\)。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 5e5 + 5;
const int M = 30 + 5;
struct node { int x, y;} L[(1 << (M / 2))], R[(1 << (M / 2))];
int n, k, p, lx, rx, val, a[N], f[2][M];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void solve(vector <int> G, int k) {
if(k < 0 || !G.size()) return ;
vector <int> L, R; int lx = 0, rx = 0;
for (int i = 0; i < G.size(); ++i) {
if((G[i] >> k) & 1) f[1][k] += lx, ++rx, R.push_back(G[i]);
else f[0][k] += rx, ++lx, L.push_back(G[i]);
}
solve(L, k - 1), solve(R, k - 1);
}
bool cmp(node a, node b) { return a.x == b.x ? a.y < b.y : a.x < b.x;}
int check(int val, int x) {
int ans = 0, j = rx;
rep(i, 1, lx) {
for (; R[j].x + L[i].x > val && j; --j) ;
for (; R[j].x + L[i].x == val && R[j].y + L[i].y > x && j; --j) ;
ans += j;
}
return ans;
}
signed main () {
freopen ("f.in", "r", stdin);
freopen ("f.out", "w", stdout);
n = read(), k = read(), p = read();
rep(i, 1, n) a[i] = read();
vector <int> G; rep(i, 1, n) G.push_back(a[i]);
solve(G, k - 1);
lx = (1 << (k / 2)), rx = (1 << (k - k / 2));
rep(i, 0, lx - 1) L[i + 1].y = i * rx;
rep(i, 0, rx - 1) R[i + 1].y = i;
rep(i, 0, lx - 1) rep(j, 0, k / 2 - 1) L[i + 1].x += f[(i >> j) & 1][j + k - k / 2];
rep(i, 0, rx - 1) rep(j, 0, k - k / 2 - 1) R[i + 1].x += f[(i >> j) & 1][j];
sort(L + 1, L + lx + 1, cmp), sort(R + 1, R + rx + 1, cmp);
int l = 0, r = n * n / 2;
while (l < r) {
int Mid = (l + r) / 2;
if(check(Mid, 1 << k) >= p) r = Mid;
else l = Mid + 1;
}
val = r, l = 0, r = (1 << k) - 1;
while (l < r) {
int Mid = (l + r) / 2;
if(check(val, Mid) >= p) r = Mid;
else l = Mid + 1;
}
printf("%lld %lld", val, r);
return 0;
}

首先发现点对对每位之间的贡献是独立的是非常重要的

其次需要意识到本质上是点对的贡献,通常使用分治解决。

注意查排名或字典序的套路:

  1. 二分答案转化为查询小于等于答案的数量个数

  2. 按位确定答案,同样转化为统计某一个前缀下后缀随意的数量

折半搜索通常解决一类选择没有关联性,两边可合并的问题,数据范围出现 \(30, 40\) 尤其要注意。

2020-11-21 f的更多相关文章

  1. apiAutoTest-更新2020/11/23

    原始版本 简书:https://www.jianshu.com/p/6bfaca87a93b 博客园:https://www.cnblogs.com/zy7y/p/13426816.html test ...

  2. 打印出1,11,21,31,41。。。。。。的shell脚本

    打印出1,11,21,31,41......的shell脚本 方法一:#!/bin/bash ;i<;i=i+));do echo $i #cat -n /etc/services | sed ...

  3. China Intelligent Office Summit(2018.11.21)

    时间:2018.11.21地点:中关村软件园国际会议中心

  4. 第33次Scrum会议(11/21)【欢迎来怼】

    一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/21 11:35~11:57,总计22min.地点:东北 ...

  5. 2017/11/21 Leetcode 日记

    2017/11/21 Leetcode 日记 496. Next Greater Element I You are given two arrays (without duplicates) num ...

  6. Linux编译内核 Ubuntu18.04 -2020.11.04

    Linux编译内核 Ubuntu18.04 -2020.11.04 关闭虚拟机并备份 首先关闭虚拟机,其次直接找到.vmdk所在目录,并压缩该目录实现备份 下载内核源码 Linux内核官网:https ...

  7. Goland 2020.2.x 激活码永久破解教程 (最新Goland激活码!2020.11.26亲测可用!)

    在2020.11.26 Goland的用户们又迎来了一次更新,这就导致很多软件打开时候就提示Goland激活码已经失效,码小辫第一时间给各位分享了关于最新Goland激活破解教程! goland已经更 ...

  8. 2020.11最新JAVA环境安装配置

    Windows10下java环境配置 更新:2020年11月25日 电脑环境: windows10 64位 一.下载jdk 首先到Oracle网站下载对应操作系统的jdk安装包. https://ww ...

  9. 【2020.11.28提高组模拟】T1染色(color)

    [2020.11.28提高组模拟]T1染色(color) 题目 题目描述 给定 \(n\),你现在需要给整数 \(1\) 到 \(n\) 进行染色,使得对于所有的 \(1\leq i<j\leq ...

  10. JZOJ 11.21 提高B组反思

    JZOJ 11.21 提高B组反思 T1 第二类斯特林数 直接套公式 \(S(i,j)=S(i-1,j-1)+S(i-1,j)*j\) 由于过大,\(unsigned\ long\ long\)都存不 ...

随机推荐

  1. ☕【难点攻克技术系列】「海量数据计算系列」如何使用BitMap在海量数据中对相应的进行去重、查找和排序

    BitMap(位图)的介绍 BitMap从字面的意思,很多人认为是位图,其实准确的来说,翻译成基于位的映射,其中数据库中有一种索引就叫做位图索引. 在具有性能优化的数据结构中,大家使用最多的就是has ...

  2. MySQL数据库基础(1)数据库基础

    目录 一.数据库简介 二.mysql数据库 三.客户端连接mysql服务 四.Navicat for mysql 一.数据库简介 1.概念 (1)数据:如文字.图形.图像.声音以及学生的档案记录等,这 ...

  3. linux脚本重启java服务

    !/bin/bashpid=$(ps -ef | grep zwdatatransfer-1.0.0.jar | grep -v 'grep' | awk '{print $2}')kill -9 $ ...

  4. Maven常用参数说明

    缩写 全名 说明 -h --help 显示帮助信息 -am --also-make 构建指定模块,同时构建指定模块依赖的其他模块 -amd --also-make-dependents 构建指定模块, ...

  5. VNC的安装和使用

    说明 VNC (Virtual Network Console)是虚拟网络控制台的缩写.它是能远程连入Linux进行图形化操作. VNC百度百科介绍:https://baike.baidu.com/i ...

  6. 下面哪些命令可以查看file1文件的第300-500行的内容?

    下面哪些命令可以查看file1文件的第300-500行的内容? cat file1 | tail -n +300 | head -n 200 cat file1| head -n 500 | tail ...

  7. 细谈 Java 匿名内部类 【分别 使用 接口 和 抽象类实现】

    1.前言 匿名内部类是什么东西? 没有名字的内部类就是匿名内部类. 什么场景使用? 匿名内部类适合创建那种只需要一次使用的类. 这是个很有用的东西,可想而知,如果不使用匿名内部类,哪些只需要使用一次的 ...

  8. Nginx虚拟主机、日志排错、模块配置

    目录 Nginx虚拟主机 1. 基于多IP的方式 2. 基于多端口的方式 3. 基于多域名的方式 Nginx日志 Nginx配置文件配置项 Nginx模块 Nginx访问控制模块 Nginx状态监控模 ...

  9. Oracle update和select 关联

    Oracle update和select 关联 目录 Oracle update和select 关联 1.介绍 2.解决方法 2.1.需求 2.2.错误演示 2.3.解决方法 1.介绍 本文主要向大家 ...

  10. Solon 开发,二、注入或手动获取Bean

    Solon 开发 一.注入或手动获取配置 二.注入或手动获取Bean 三.构建一个Bean的三种方式 四.Bean 扫描的三种方式 五.切面与环绕拦截 六.提取Bean的函数进行定制开发 七.自定义注 ...