Tensorflow Serving 参数
Flags:
--port=8500 int32 Port to listen on for gRPC API
--grpc_socket_path="" string If non-empty, listen to a UNIX socket for gRPC API on the given path. Can be either relative or absolute path.
--rest_api_port=0 int32 Port to listen on for HTTP/REST API. If set to zero HTTP/REST API will not be exported. This port must be different than the one specified in --port.
--rest_api_num_threads=16 int32 Number of threads for HTTP/REST API processing. If not set, will be auto set based on number of CPUs.
--rest_api_timeout_in_ms=30000 int32 Timeout for HTTP/REST API calls.
--enable_batching=false bool enable batching
--batching_parameters_file="" string If non-empty, read an ascii BatchingParameters protobuf from the supplied file name and use the contained values instead of the defaults.
--model_config_file="" string If non-empty, read an ascii ModelServerConfig protobuf from the supplied file name, and serve the models in that file. This config file can be used to specify multiple models to serve and other advanced parameters including non-default version policy. (If used, --model_name, --model_base_path are ignored.)
--model_name="default" string name of model (ignored if --model_config_file flag is set)
--model_base_path="" string path to export (ignored if --model_config_file flag is set, otherwise required)
--max_num_load_retries=5 int32 maximum number of times it retries loading a model after the first failure, before giving up. If set to 0, a load is attempted only once. Default: 5
--load_retry_interval_micros=60000000 int64 The interval, in microseconds, between each servable load retry. If set negative, it doesn't wait. Default: 1 minute
--file_system_poll_wait_seconds=1 int32 Interval in seconds between each poll of the filesystem for new model version. If set to zero poll will be exactly done once and not periodically. Setting this to negative value will disable polling entirely causing ModelServer to indefinitely wait for a new model at startup. Negative values are reserved for testing purposes only.
--flush_filesystem_caches=true bool If true (the default), filesystem caches will be flushed after the initial load of all servables, and after each subsequent individual servable reload (if the number of load threads is 1). This reduces memory consumption of the model server, at the potential cost of cache misses if model files are accessed after servables are loaded.
--tensorflow_session_parallelism=0 int64 Number of threads to use for running a Tensorflow session. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--tensorflow_intra_op_parallelism=0 int64 Number of threads to use to parallelize the executionof an individual op. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--tensorflow_inter_op_parallelism=0 int64 Controls the number of operators that can be executed simultaneously. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--ssl_config_file="" string If non-empty, read an ascii SSLConfig protobuf from the supplied file name and set up a secure gRPC channel
--platform_config_file="" string If non-empty, read an ascii PlatformConfigMap protobuf from the supplied file name, and use that platform config instead of the Tensorflow platform. (If used, --enable_batching is ignored.)
--per_process_gpu_memory_fraction=0.000000 float Fraction that each process occupies of the GPU memory space the value is between 0.0 and 1.0 (with 0.0 as the default) If 1.0, the server will allocate all the memory when the server starts, If 0.0, Tensorflow will automatically select a value.
--saved_model_tags="serve" string Comma-separated set of tags corresponding to the meta graph def to load from SavedModel.
--grpc_channel_arguments="" string A comma separated list of arguments to be passed to the grpc server. (e.g. grpc.max_connection_age_ms=2000)
--enable_model_warmup=true bool Enables model warmup, which triggers lazy initializations (such as TF optimizations) at load time, to reduce first request latency.
--version=false bool Display version
--monitoring_config_file="" string If non-empty, read an ascii MonitoringConfig protobuf from the supplied file name
Tensorflow Serving 参数的更多相关文章
- 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...
- tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...
- tensorflow serving 之minist_saved_model.py解读
最近在学习tensorflow serving,但是就这样平淡看代码可能觉得不能真正思考,就想着写个文章看看,自己写给自己的,就像自己对着镜子演讲一样,写个文章也像自己给自己讲课,这样思考的比较深,学 ...
- Tensorflow Serving 模型部署和服务
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/233614 ...
- tensorflow serving 编写配置文件platform_config_file的方法
1.安装grpc gRPC 的安装: $ pip install grpcio 安装 ProtoBuf 相关的 python 依赖库: $ pip install protobuf 安装 python ...
- 基于TensorFlow Serving的深度学习在线预估
一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1] ...
- 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型
昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...
- TensorFlow Serving简介
一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Ser ...
- docker部署tensorflow serving以及模型替换
Using TensorFlow Serving with Docker 1.Ubuntu16.04下安装docker ce 1-1:卸载旧版本的docker sudo apt-get remove ...
随机推荐
- Error: Actions must be plain objects. Use custom middleware for async actions.
原本代码: import { SREACH_FOCUS, SREACH_BLUR } from "./actionType" export const searchFocus = ...
- idea没有错误提示的解决方法(一直处于错误分析中)
仅作记录,以防再次发生却不记得. 原文链接:https://blog.csdn.net/a755199443/article/details/90084316 问题描述:idea没有自动报错.例如随便 ...
- vue:表格中多选框的处理
效果如下: template中代码如下: <el-table v-loading="listLoading" :data="list" element-l ...
- linux之安装nginx
nginx官网:http://nginx.org/en/download.html 1.安装nginx所需环境 a) PCRE pcre-devel 安装 # yum install -y pcre ...
- 由剑指offer引发的思考——对象中虚函数指针的大小
先看一个简单的问题: 一.定义一个空的类型,对于其对象我们sizeof其大小,是1字节.因为我们定义一个类型,编译器必须为其分配空间,具体分配多少是编译器决定,vs是1字节,分配在栈区. 那,这一个字 ...
- C# 中 string.Empty、""、null的差别
一.string.Empty 和 "" 原文1 原文2 1. ...
- Linux 虚拟文件系统四大对象:超级块、inode、dentry、file之间关系
更多嵌入式原创文章,请关注公众号:一口Linux 一:文件系统 1. 什么是文件系统? 操作系统中负责管理和存储文件信息的软件机构称为文件管理系统,简称文件系统. 通常文件系统是用于存储和组织文件的一 ...
- PAT-1140(Look-and-say Sequence)字符串处理
Look-and-say Sequence PAT-1140 #include<iostream> #include<cstring> #include<string&g ...
- java 方法详解
什么是方法 方法的定义和调用 值传递与引用传递 值传递:指的是在方法调用时,传递的是参数是按值的拷贝传递. 特点:传递的是值的拷贝,也就是传递后就互不相关了. 引用传递:指的是在方法调用时,传递的参数 ...
- SQL驱动限制,导致插入失败
insert into TB_IF_ORDERS (DC_CD,JOB_DT,SEQ_NO,ORDER_KEY,ORDER_ID,ORDER_LINE_NUM,COMPANY_CD,CUST_CD,S ...