分布式系统ID
Leaf——美团点评分布式ID生成系统
前言
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。概括下来,那业务系统对ID号的要求有哪些呢?
- 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
- 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
- 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
- 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。
上述123对应三类不同的场景,3和4需求还是互斥的,无法使用同一个方案满足。
同时除了对ID号码自身的要求,业务还对ID号生成系统的可用性要求极高,想象一下,如果ID生成系统瘫痪,整个美团点评支付、优惠券发券、骑手派单等关键动作都无法执行,这就会带来一场灾难。
由此总结下一个ID生成系统应该做到如下几点:
- 平均延迟和TP999延迟都要尽可能低;
- 可用性5个9;
- 高QPS。
在实际的应用中,我们经常会遇到id生成问题。其中最基本的就是要保证id的唯一性。常见解决方案如下。
- 微软公司通用唯一识别码(UUID)
- Twitter公司雪花算法(SnowFlake)
- 基于数据库的id自增
其中,使用数据库进行id自增是在单机应用中使用最普遍的id生成方式,它能够完全保证id的不重复。但id的自增并不是在任何数据库都支持,这就给数据库迁移造成了麻烦。并且,数据库的解决方案在分布式环境下的只能保证单个数据库作为生产数据库,存在单点故障的危险。
而微软的UUID显然是一种极佳的解决方案,它由当前日期时间、时钟序列、全局唯一的机器标识号来生成一段无序的字符串id。 它的确实现了ID的唯一性但肉眼可辨识度比较差。虽然满足了我们的基本要求,但实际很多的生产中我们还有id根据时间进行递增的进阶要求。这显然是无法实现的。
所以,下面我们就讲讲Twitter公司的雪花算法是如何进行id生成的。
雪花算法的优缺点是:
优点:
- 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
- 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
- 可以根据自身业务特性分配bit位,非常灵活。
缺点:
- 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。
应用举例Mongdb objectID
MongoDB官方文档 ObjectID可以算作是和snowflake类似方法,通过“时间+机器码+pid+inc”共12个字节,通过4+3+2+3的方式最终标识成一个24长度的十六进制字符。
雪花的结构
首先,我们从它的设计入手,自己想一下,如果让我们设计一个id,如何保证既能唯一又能按照时间递增?
首先,既然要按照时间递增,那么这个id一定是个数,而不是字符串。并且在id中时间要作为第一影响因素,越晚生成的id,数字越大。那么整个数字id的前几位一定是时间戳。这就实现了按照时间递增。
那么同时间的并发生成如何保证唯一性呢?我们还会想到在分布式情况下要在多台机器上生成id,那么直接再加上这台机器的id就好了。
Ok,继续思考,时间相同,在同一台机器上生成的多个id如何保证唯一性,这时候就会想,也许可以再在后面加一串随机数或者序列之类的。
想到这,就有了下面的雪花算法的结构图。

可以看出,雪花算法生成的id既保证了唯一性,又因为是long存储,所以能够按照时间进行排序。至于69年的限制可以忽略不计。
/**
* 雪花算法--分布式系统ID
* @author huzhiyong
*
*/
public class IdWorker {
private long workerId;
private long datacenterId;
private long sequence; public IdWorker(long workerId, long datacenterId, long sequence) {
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
System.out.printf(
"worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
} private long twepoch = 1288834974657L;
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
private long sequenceBits = 12L;
private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private long sequenceMask = -1L ^ (-1L << sequenceBits);
private long lastTimestamp = -1L; public long getWorkerId() {
return workerId;
} public long getDatacenterId() {
return datacenterId;
} public long getTimestamp() {
return System.currentTimeMillis();
} public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
lastTimestamp = timestamp;
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
} private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} // ---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1, 1, 1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}
}
分布式系统ID的更多相关文章
- 分布式系统ID生成方案汇总
在分布式系统中,需要对大量的数据.消息.请求等进行唯一的标识,例如分布式数据库的ID需要满足唯一且多数据库同步,在单一系统中,使用数据库自增主键可以满足需求,但是在分布式系统中就需要一个能够生成全局唯 ...
- 分布式系统ID生成办法
前言 一般单机或者单数据库的项目可能规模比较小,适应的场景也比较有限,平台的访问量和业务量都较小,业务ID的生成方式比较原始但是够用,它并没有给这样的系统带来问题和瓶颈,所以这种情况下我们并没有对此给 ...
- 分布式系统ID的几种生成办法
前言 一般单机或者单数据库的项目可能规模比较小,适应的场景也比较有限,平台的访问量和业务量都较小,业务ID的生成方式比较原始但是够用,它并没有给这样的系统带来问题和瓶颈,所以这种情况下我们并没有对此给 ...
- 分布式系统ID的生成方法之UUID、数据库、算法、Redis、Leaf方案
一般单机或者单数据库的项目可能规模比较小,适应的场景也比较有限,平台的访问量和业务量都较小,业务ID的生成方式比较原始但是够用,它并没有给这样的系统带来问题和瓶颈,所以这种情况下我们并没有对此给予太多 ...
- 分布式系统ID生成方案
自增ID 不错,可以限度抑制ID的大小.但需要有一个中心化的节点作为解决原子性问题.可以选用Redis,MySQL,Zookeeper.成本有点高. UUID 分布式,而且唯一!缺点是生产的ID太长. ...
- CosId 通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
- CosId 1.0.0 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
- CosId 1.0.3 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
- CosId 1.1.0 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
随机推荐
- SpringBoot笔记(3)
一.配置文件 1.文件类型 1.1.properties 同以前的properties用法 1.2.yaml 1.2.1.简介 YAML 是 "YAML Ain't Markup Langu ...
- Django的form组件——正则校验
from django.contrib import admin from django.urls import path from app01 import views urlpatterns = ...
- 关闭Redis服务
方式1: 方式2:
- Redis的持久化机制与内存管理机制
1.概述 Redis的持久化机制有两种:RDB 和 AOF ,这两种机制有什么区别?正式环境应该采用哪种机制? 我们的服务器内存资源是有限的,如果内存被Redis的缓存占满了怎么办?这就要看Redis ...
- ubuntu下使用minicom
环境 宿主机平台:Ubuntu 16.04.6 目标机:iMX6ULL 安装及使用 首先时在Ubuntu里安装minicom sudo apt-get install minicom 接下来可以使用 ...
- AI:用软件逻辑做硬件爆款
"我们的野心不止那么一点点." 百度集团副总裁.百度智能生活事业群组(SLG)总经理.小度CEO景鲲曾多次对外表达过这样的观点. 在2021年百度世界大会上,小度又一口气发布了四款 ...
- TypeScript 中装饰器的理解?应用场景?
一.是什么 装饰器是一种特殊类型的声明,它能够被附加到类声明,方法, 访问符,属性或参数上 是一种在不改变原类和使用继承的情况下,动态地扩展对象功能 同样的,本质也不是什么高大上的结构,就是一个普通的 ...
- windows 下使用 mingw编译器 调试时 无法跟进源码
windows 下使用 mingw编译器 调试时 无法跟进源码 最近在公司使用QT 开发,官方在线下载的 安装的QT mingw 都是没有debug版本的 由于没有debug版本动态库 所以你调试的时 ...
- 【OWASP TOP10】2021年常见web安全漏洞TOP10排行
[2021]常见web安全漏洞TOP10排行 应用程序安全风险 攻击者可以通过应用程序中许多的不同的路径方式去危害企业业务.每种路径方法都代表了一种风险,这些风险都值得关注. 什么是 OWASP TO ...
- springboot整合jsp报错
今天在学springboot整合jsp时遇到了一个问题,虽然jsp不被spring官方推荐使用,但抱着学习的心态还是想解决一下这个问题.在写好了需要pom文件之后,访问网站得到了500的错误提示,后台 ...