\(\checkmark\)

试题一 完成情况 试题二 完成情况 试题三 完成情况
cf549E cf674G arc103_f \(\checkmark\)
cf594E agc034_f agc030_d
cf575E agc035_c agc026_f
cf607E agc038_e agc030_c
cf611G agc034_d agc024_f
cf571E cf696F arc093_e
cf573E cf704E arc103_d
cf627F agc035_d \(\checkmark\) agc033_f
cf538G cf674D arc101_f
cf566C \(\checkmark\) cf700E arc092_f
cf566E agc034_e \(\checkmark\) agc022_d
cf613E agc033_e agc021_f
cf528C agc038_f agc029_e
cf611H agc036_d agc027_e
cf626G cf666D arc102_f
cf605E \(\checkmark\) agc031_e agc028_d
cf536D agc027_f agc024_e
cf553E agc037_f agc029_c
cf571D cf708E arc093_f
cf603E agc036_e agc021_e
cf590E agc031_d agc026_e
cf587F cf685C arc096_e
cf587D cf674F arc091_f
cf575I agc035_f agc028_f
cf504E cf671E arc101_e \(\checkmark\)
cf585F cf708D arc095_f
cf521D agc036_f agc028_c
cf585E agc032_c \(\checkmark\) agc023_f \(\checkmark\)
cf568C cf666E agc025_e
cf568E cf704C arc100_f
cf538H agc032_d agc024_d
cf582E agc039_e agc025_f
cf526F agc037_d agc020_e \(\checkmark\)
cf521E agc030_f agc026_d
cf526G cf698D arc089_f
cf582D cf634F agc020_d
cf578F cf704B arc099_f
cf578E agc035_e agc025_d
cf516E agc030_e agc027_d
cf576E cf704D arc096_f
cf547E cf671D arc097_f
cf547D agc033_d agc031_f
cf575A cf639E agc039_f
cf559E agc037_e agc020_f
cf512D \(\checkmark\) agc028_e agc022_f
cf506E cf639F agc039_d
cf576D agc029_f agc022_e
cf555E agc032_e agc023_d
cf506C \(\checkmark\) cf679E \(\checkmark\) arc098_f \(\checkmark\)
cf516D \(\checkmark\) agc032_f agc023_e

IOI 2020 国家集训队作业的更多相关文章

  1. 2017国家集训队作业Atcoder题目试做

    2017国家集训队作业Atcoder题目试做 虽然远没有达到这个水平,但是据说Atcoder思维难度大,代码难度小,适合我这种不会打字的选手,所以试着做一做 不知道能做几题啊 在完全自己做出来的题前面 ...

  2. 2017国家集训队作业[agc016b]Color Hats

    2017国家集训队作业[agc016b]Color Hats 题意: 有\(N\)个人,每个人有一顶帽子.帽子有不同的颜色.现在,每个人都告诉你,他看到的所有其它人的帽子共有多少种颜色,问有没有符合所 ...

  3. 2017国家集训队作业[agc016e]Poor Turkey

    2017国家集训队作业[agc016e]Poor Turkey 题意: 一开始有\(N\)只鸡是活着的,有\(M\)个时刻,每个时刻有两个数\(X_i,Y_i\),表示在第\(i\)个时刻在\(X_i ...

  4. 2017国家集训队作业[agc006f]Blackout

    2017国家集训队作业[agc006f]Blackout 题意: 有一个\(N*N\)的网格,一开始有\(M\)个格子被涂黑,给出这\(M\)个格子,和染色操作:如果有坐标为\((x,y),(y,z) ...

  5. 2017国家集训队作业[agc004f]Namori

    2017国家集训队作业[agc004f]Namori 题意: 给你一颗树或环套树,树上有\(N\)个点,有\(M\)条边.一开始,树上的点都是白色,一次操作可以选择一条端点颜色相同的边,使它的端点颜色 ...

  6. 2017国家集训队作业[arc082d]Sandglass

    2017国家集训队作业[arc082d]Sandglass 题意: ​ 有一个沙漏,初始时\(A\)瓶在上方,两个瓶子的最大容量都为\(X\)克,沙子流动的速度为\(1g\)每单位时间.给出\(K\) ...

  7. 2017国家集训队作业[arc076d/f][Exhausted?]

    2017国家集训队作业[arc076d/f][Exhausted?] 题意: ​ 有\(N\)个人,\(M\)把椅子,给出\(...L_i.R_i\)表示第\(i\)个人可以选择编号为\(1\sim ...

  8. 2017国家集训队作业[agc006e]Rotate 3x3

    2017国家集训队作业[agc006e]Rotate 3x3 题意: ​ 给你一个\(3*N\)的网格,每次操作选择一个\(3*3\)的网格,旋转\(180^\circ\).问可不可以使每个位置\(( ...

  9. 2017国家集训队作业[agc014d]Black and White Tree

    2017国家集训队作业[agc014d]Black and White Tree 题意: ​ 有一颗n个点的树,刚开始每个点都没有颜色.Alice和Bob会轮流对这棵树的一个点涂色,Alice涂白,B ...

随机推荐

  1. DDL_Killer Alpha版本 Bug集中反馈处

    本博客用于DDL_Killer Alpha版本的Bug集中反馈. 您可以在本博客的下方评论区处留言,反馈您在使用DDl_Killer的过程中遇到的问题,以帮助我们更好的改进本产品. 我们会尽快修复找到 ...

  2. 认识spring security

    在一个系统中认证和授权是常有的事情,现在比较流行的框架有spring security.shiro等等.他们都能很好的帮助我们完成认证和授权的功能.那么假如说让我们自己完成一个登录那么应该大致的流程是 ...

  3. springboot读取配置文件中的信息

    在一个项目中,我们有时候会把一些配置信息写入到一个配置文件中,在java代码中读取配置文件的信息.在此记录下读取属性文件中的内容. 在springboot项目中,springboot的配置文件可以使用 ...

  4. eureka服务端的高可用

    eureka client的高可用这个很简单,只需要向eureka服务端上多注册几个实例即可,那么eureka server端如何实现高可用呢?其实eureka server 端也是可以做为一个客户端 ...

  5. 一文带你掌握【TCP拥塞窗口】原理

    ❝ 关注公众号:高性能架构探索.后台回复[资料],可以免费领取 ❞ 学过网络相关课程的,都知道TCP中,有两个窗口: 滑动窗口(在我们的上一篇文章中有讲),接收方通过通告发送方自己的可以接受缓冲区大小 ...

  6. MyBatis源码分析(五):MyBatis Cache分析

    一.Mybatis缓存介绍 在Mybatis中,它提供了一级缓存和二级缓存,默认的情况下只开启一级缓存,所以默认情况下是开启了缓存的,除非明确指定不开缓存功能.使用缓存的目的就是把数据保存在内存中,是 ...

  7. python numpy版本报错: File "*\numpy\__init__.py", line 305, in <module> _win_os_check()

    具体代码如下所示: from numpy import * import operator a = random.rand(4, 4) print(a) 具体报错内容如下所示: Traceback ( ...

  8. Ubuntu中python的mysql操作

    1.在已经安装了python和MySQL数据库的前提下使用pip3 install PyMySQL命令 2. 建立链接: (1)首先使用命令python 进入编程模式,再导入包: import pym ...

  9. 【数据结构&算法】05-线性表之数组

    目录 前言 线性结构与非线性结构 数组 数组的两个限制 数组的随机访问特性 数组的操作 插入操作 删除操作 数组越界 容器 数组下标 前言 本笔记主要记录数组的一些基础特性及操作. 顺便解答下为什么大 ...

  10. topk算法

    方法一 堆排序 自建堆 heapMax方法,从上至下调整堆 pop时,可以使用自上而下调整堆,调用heapMax(arr,0,sz-1); push时,需要自下到上调整即 从上到下调整: void h ...