1.理解神经网络

1)基本概念

  • 人工神经网络(ANN):对一组输入信号和一组输出信号之间的关系进行建模,模型来源于人类大脑对来自感觉输入刺激反应的理解。使用人工神经元或节点的网络来学习。
  • 图灵测试:如果一个人不能把机器行为和一种生物行为区分开来,那么将该机器划分为智能类。
  • ANN应用方法:分类/数值预测/无监督模式识别
  • ANN应用场景:输入和输出好理解,但其过程很复杂(即黑箱方法)





n个输入神经元:

2)激活函数

  • 单位跳跃激活函数:输入信号总和大于0,神经元才击破阈值

  • S形激活函数(最常用的激活函数):输出信号不是二元的,而是0-1之间的某个值(可微的,因此可对整个输入范围求导)

  • 其他激活函数:差异就在于输出信号的范围不同,一般是(0-1),(-1,1),(-∞,+∞)中的一种。



对于很多激活函数,影响输出信号的输入值范围是相对较窄的,比如上面S形激活函数影响输出信号(0,1)的输入信号范围(-5,5),存在输入信号压缩(也称为压缩函数),所以神经网络输入一般要做标准化,使特征值落在0附近的小范围内,这样模型训练也更快些。

3)网络拓扑

神经网络的学习能力来自它的拓扑结构:相互连接的神经元模式和结构。关键特征:

  • 层的数目



  • 信息传播方向

    前馈网络:输入信号从上至下节点传送,直至输出层。应用广泛。

    反馈网络(递归网络):允许信号使用循环在两个方向上传播。更贴近生物神经网络工作原理,使复杂模式被学习。停留在理论层面。

    多层前馈网络(多层感知器,MLP):人工神经网络拓扑结构的事实标准。

  • 每一层内的节点数

    输入节点的个数由输入数据特征的数量预先确定,输出节点的个数由需要进行建模的结果或结果中分类水平数预先确定。隐藏节点的个数留给使用者在训练模型之前确定(无可信规则)。

    较多数量的神经元训练更严格的模型,但易过拟合,且训练慢。最好是基于验证数据集,使用较少的节点产生适用的性能。

4)训练算法

通过调整连接权重训练神经网络模型的计算量非常大,因此一种后向传播误差的训练策略被发现。

目前,后向传播算法的多层前馈网络在数据挖掘领域很常见:



该算法通过两个过程的多次循环进行迭代。

两个过程:

  • 前向阶段:输入层到输出层,沿途应用每个神经元的权重和激活函数,一旦到最后一层就产生一个输出信号。
  • 后向阶段:前向阶段产生的输出信号与训练集中的真是目标值比较,两者的误差向后传播来修正神经元之间的连接权重,并减少将来的误差。

梯度下降法:利用每个神经元的激活函数的导数来确定每个输入权重方向上的梯度(因此一个可微的激活函数很重要,梯度因为权重的改变表明误差的急剧变化,后向传播算法通过学习率的量来改变权重来使得误差最大化减少)。

2.神经网络应用示例

使用人工神经网络对混凝土的强度进行建模

1)收集数据

包含1030个混凝土案例,8个描述混合物成分的特征(与抗压强度相关)。

数据下载:

链接: https://pan.baidu.com/s/1Js-Asm479XYBjuCEXVF7Ng 提取码: 45fv

2)探索和准备数据

输入数据的标准化。注意如果数据服从一个钟形曲线(如正态分布),使用base::scale()函数才是有意义的。如果是均匀分布或严重非正态,则标准化到0-1水平会更合适。

## Example: Modeling the Strength of Concrete  ----

## Step 2: Exploring and preparing the data ----
# read in data and examine structure
concrete <- read.csv("concrete.csv")
str(concrete) # custom normalization function
normalize <- function(x) {
return((x - min(x)) / (max(x) - min(x)))
} # apply normalization to entire data frame
concrete_norm <- as.data.frame(lapply(concrete, normalize)) # confirm that the range is now between zero and one
summary(concrete_norm$strength) # compared to the original minimum and maximum
summary(concrete$strength) # create training and test data
concrete_train <- concrete_norm[1:773, ] #75%
concrete_test <- concrete_norm[774:1030, ] #25%

训练模型前应用于数据的任何变换,之后需要应用反变换,以便将数据转换回原始的测量单位。

3)训练数据

可做神经网络的R包:neuralnet,nnet,RSNNS等。这里使用neuralnet包的同名函数来做,hidden参数即隐藏层默认为1。

## Step 3: Training a model on the data ----
# train the neuralnet model
library(neuralnet) # simple ANN with only a single hidden neuron
set.seed(12345) # to guarantee repeatable results
concrete_model <- neuralnet(formula = strength ~ cement + slag +
ash + water + superplastic +
coarseagg + fineagg + age,
data = concrete_train) # visualize the network topology
plot(concrete_model)

训练模型的网络拓扑结构可视化:

4)评估模型

评估模型是compute函数(而非predict),评估中包含网络中每一层的神经元和预测值这2个结果。

因为是数值预测而不是分类问题,所以不能用混淆矩阵来评估,可以用预测的强度和真实值的相关性来评估。

## Step 4: Evaluating model performance ----
# obtain model results
model_results <- compute(concrete_model, concrete_test[1:8])
# obtain predicted strength values
predicted_strength <- model_results$net.result
# examine the correlation between predicted and actual values
cor(predicted_strength, concrete_test$strength)

5)提高性能

考虑使用更复杂拓扑结构的网络学习,将隐藏节点个数增加到5来提高性能。

## Step 5: Improving model performance ----
# a more complex neural network topology with 5 hidden neurons
set.seed(12345) # to guarantee repeatable results
concrete_model2 <- neuralnet(strength ~ cement + slag +
ash + water + superplastic +
coarseagg + fineagg + age,
data = concrete_train, hidden = 5) # plot the network
plot(concrete_model2) # evaluate the results as we did before
model_results2 <- compute(concrete_model2, concrete_test[1:8])
predicted_strength2 <- model_results2$net.result
cor(predicted_strength2, concrete_test$strength)




机器学习与R语言系列推文汇总:

【机器学习与R语言】1-机器学习简介

【机器学习与R语言】2-K近邻(kNN)

【机器学习与R语言】3-朴素贝叶斯(NB)

【机器学习与R语言】4-决策树

【机器学习与R语言】5-规则学习

【机器学习与R语言】6-线性回归

【机器学习与R语言】7-回归树和模型树

【机器学习与R语言】8-神经网络

【机器学习与R语言】9-支持向量机

【机器学习与R语言】10-关联规则

【机器学习与R语言】11-Kmeans聚类

【机器学习与R语言】12-如何评估模型的性能?

【机器学习与R语言】13-如何提高模型的性能?

【机器学习与R语言】8- 神经网络的更多相关文章

  1. 【机器学习与R语言】13- 如何提高模型的性能?

    目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 ...

  2. 【机器学习与R语言】9- 支持向量机

    目录 1.理解支持向量机(SVM) 1)SVM特点 2)用超平面分类 3)对非线性空间使用核函数 2. 支持向量机应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高性能 ...

  3. 【机器学习与R语言】1-机器学习简介

    目录 1.基本概念 2.选择机器学习算法 3.使用R进行机器学习 1.基本概念 机器学习:发明算法将数据转化为智能行为 数据挖掘 VS 机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务.后者 ...

  4. 【机器学习与R语言】12- 如何评估模型的性能?

    目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的 ...

  5. 【机器学习与R语言】11- Kmeans聚类

    目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Km ...

  6. 【机器学习与R语言】10- 关联规则

    目录 1.理解关联规则 1)基本认识 2)Apriori算法 2.关联规则应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解关联规则 1)基本认识 购物 ...

  7. 【机器学习与R语言】7-回归树和模型树

    目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树:基于到达 ...

  8. 【机器学习与R语言】6-线性回归

    目录 1.理解回归 1)简单线性回归 2)普通最小二乘估计 3)相关系数 4)多元线性回归 2.线性回归应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理 ...

  9. 【机器学习与R语言】5-规则学习算法

    目录 1.分类规则原理 1.1 1R单规则算法 1.2 RIPPER算法 2. 规则学习应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估性能 5)提高性能 6)选择决策树中的分类规则 ...

随机推荐

  1. BPMN 學習實例

    什麼是業務流程圖? What is BPMN 業務流程建模符號(BPMN)是業務流程建模的一種方法.它基於統一建模語言(UML)中活動圖的概念,以圖形符號(業務流程圖)支持業務流程的規範.BPMN為企 ...

  2. AIApe问答机器人Scrum Meeting 4.27

    Scrum Meeting 3 日期:2021年4月27日 会议主要内容概述:汇报两日工作. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 李明昕 后端 Tas ...

  3. Scrum Meeting 5.26

    Scrum Meeting Beta 1 日期:2021年5月23日&2021年5月24日 会议主要内容概述:汇报工作 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作 ...

  4. Seata整合SpringBoot和Mybatis

    Seata整合SpringBoot和Mybatis 一.背景 二.实现功能 三.每个服务使用到的技术 1.账户服务 2.订单服务 四.服务实现 1.账户服务实现 1.引入jar包 2.项目配置 3.建 ...

  5. ASP.NET Core 学习笔记 第四篇 ASP.NET Core 中的配置

    前言 说道配置文件,基本大多数软件为了扩展性.灵活性都会涉及到配置文件,比如之前常见的app.config和web.config.然后再说.NET Core,很多都发生了变化.总体的来说技术在进步,新 ...

  6. 视频编码GOP

    GOP group of pictures GOP 指的就是两个I帧之间的间隔. 比较说GOP为120,如果是720 p60 的话,那就是2s一次I帧. 在视频编码序列中,主要有三种编码帧:I帧.P帧 ...

  7. QuantumTunnel:Netty实现

    接上一篇文章内网穿透服务设计挖的坑,本篇来聊一下内网穿透的实现. 为了方便理解,我们先统一定义使用到的名词: UserClient:用户客户端,真实的请求发起方: UserServer:内网穿透-用户 ...

  8. Spark面试题(四)

    1.Spark中的HashShufle的有哪些不足? 1)shuffle产生海量的小文件在磁盘上,此时会产生大量耗时的.低效的IO操作: 2)容易导致内存不够用,由于内存需要保存海量的文件操作句柄和临 ...

  9. Java不同时区(timezone)之间时间转换

    最近出现一个问题是这样的:我们的系统在国外打印的日志时间由于时差关系和国内不一致,看起来不方便,希望国外的日志和国内保持一致,即:需要对不同时区的时间做转换调整,统一为国内时间. 一.关于时区的一些概 ...

  10. 2021中国能源网络信息安全大赛wp

    FROM TEAM BINX Web ezphp CODE 将base64解了之后得到: $O0O000="rFqQmguebyiVTBwlWAJYRhsHXfpojxEndNGkZICDL ...