Codeforces 题面传送门 & 洛谷题面传送门

由于这场的 G 是道毒瘤题,蒟蒻切不动就只好来把这场的 F 水掉了

看到这样的设问没人想到这道题吗?那我就来发篇线段树+单调栈的做法。

首先显然一个区间 \([l,r]\) 满足条件当且仅当:

  • \([l,r]\) 中不存在重复的数值
  • \([l,r]\) 中最小值为 \(1\)
  • \([l,r]\)​ 中最大值与最小值的差为 \(r-l\)​

题解区中某位大佬说过:“数区间的题无非两种套路,枚举端点和分治”,这里咱们考虑枚举端点。具体来说,咱们枚举右端点 \(r\),那么满足 \([l,r]\) 中不存在重复的数值的 \(l\) 显然组成了一段连续的区间,且这个区间的右端点就是 \(r\),因此可以在枚举右端点的同时 two pointers 找出满足“\([l,r]\) 中不存在重复的数值”的最大的 \(l\),设为 \(l'\) 这样我们左端点只用在 \([l',r]\) 中取值即可,这样第一个条件就解决了。第二个条件其实也异常 simple,我们只用找出上一个 \(1\) 所在的位置 \(p\),如果 \(p<l'\) 那咱们就忽略这个区间,否则显然你区间的左端点必须 \(\le p\),这样咱们区间的左端点的范围就进一步缩小到了 \([l',p]\)。比较棘手的是第三个条件,不过按照那题的套路,第三个条件可以转化为 \(\max\limits_{i=l}^ra_i-(r-l+1)=0\),又因为 \(\forall l\in[l',p]\),区间 \([l,r]\) 中的数互不相同,因此 \(\forall l\in[l',p],\max\limits_{i=l}^ra_i-(r-l+1)\ge 0\),因此我们可以开一棵线段树,线段树上 \(l\) 位置上的值就是 \(\max\limits_{i=l}^ra_i-(r-l+1)\),显然该线段树可以单调栈维护,那么我们只需要求出 \([l',p]\) 最小值即最小值个数即可算出贡献,具体来说如果最小值不为 \(0\) 那么贡献为 \(0\),否则贡献就是最小值的个数。

时间复杂度 \(\mathcal O(n\log n)\)

const int MAXN=3e5;
int n,a[MAXN+5];
struct node{int l,r;pii p;ll lz;} s[MAXN*4+5];
pii operator +(pii lhs,pii rhs){
pii res;res.fi=min(lhs.fi,rhs.fi);
if(res.fi==lhs.fi) res.se+=lhs.se;
if(res.fi==rhs.fi) res.se+=rhs.se;
return res;
}
void pushup(int k){s[k].p=s[k<<1].p+s[k<<1|1].p;}
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;if(l==r) return s[k].p=mp(0,1),void();
int mid=l+r>>1;build(k<<1,l,mid);build(k<<1|1,mid+1,r);pushup(k);
}
void pushdown(int k){
if(s[k].lz){
s[k<<1].p.fi+=s[k].lz;s[k<<1].lz+=s[k].lz;
s[k<<1|1].p.fi+=s[k].lz;s[k<<1|1].lz+=s[k].lz;
s[k].lz=0;
}
}
void modify(int k,int l,int r,int x){
if(l<=s[k].l&&s[k].r<=r){
s[k].p.fi+=x;s[k].lz+=x;return;
} pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) modify(k<<1,l,r,x);
else if(l>mid) modify(k<<1|1,l,r,x);
else modify(k<<1,l,mid,x),modify(k<<1|1,mid+1,r,x);
pushup(k);
}
pii query(int k,int l,int r){
if(l<=s[k].l&&s[k].r<=r) return s[k].p;
pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) return query(k<<1,l,r);
else if(l>mid) return query(k<<1|1,l,r);
else return query(k<<1,l,mid)+query(k<<1|1,mid+1,r);
}
int pre[MAXN+5],cnt[MAXN+5];
int main(){
scanf("%d",&n);build(1,1,n);ll res=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
stack<int> stk;stk.push(0);a[0]=0x3f3f3f3f;
for(int i=1,j=1;i<=n;i++){
cnt[a[i]]++;while(cnt[a[i]]>=2) cnt[a[j++]]--;
pre[a[i]]=i;modify(1,1,i,-1);modify(1,i,i,a[i]);
while(!stk.empty()&&a[stk.top()]<a[i]){
int x=stk.top();stk.pop();
modify(1,stk.top()+1,x,a[i]-a[x]);
} stk.push(i);if(pre[1]>=j){
pii p=query(1,j,pre[1]);
if(!p.fi) res+=p.se;
}
} printf("%ld\n",res);
return 0;
}

还有一种思路便是分治(既然上面咱们选择了枚举端点,那这边咱们就要选择分治咯)

我们首先考虑怎样判断一个区间是否存在相同元素,按照区间数颜色的套路,我们记 \(p_i\) 表示 \(i\) 前面上一个与 \(a_i\) 相等的 \(a_j\) 的位置,那么区间 \([l,r]\) 不存在重复元素的充要条件是 \(\max\limits_{i=l}^rp_i<l\)。考虑分治,处理左右端点 \([l,r]\) 都在 \([l,r]\) 中的区间时,我们找出区间最大值所在的位置 \(p\),那么显然 \([l,r]\) 中的区间可以像点分治那样分成三类:完全包含于 \([l,p-1]\)、完全包含于 \([p+1,r]\),以及跨过 \(p\),前两类显然可以递归处理。关于第三类,显然区间中最大的数就是 \(a_p\),区间长度也就是 \(a_p\),因此我们枚举所有长度为 \(a_p\)、且跨过位置 \(p\)(这点一定要判断)的区间计算贡献即可,但这样会 T,考虑优化,显然区间左端点必须在 \([l,p]\) 中对吧,右端点必须在 \([p,r]\) 中对吧,那么我们就考虑 \([l,p],[p,r]\) 中长度的较小者,如果 \([l,p]\) 长度较小就枚举左端点 \(L\in[l,p]\),否则枚举右端点 \(R\in[p,r]\)。这样乍一看复杂度没啥变化,不过按照这题的套路,这其实相当于启发式合并的逆过程,即启发式分裂(瞎起名字 ing),因此复杂度是严格单 log 的。

非常神奇,谁能告诉我为什么两个程序跑得一样快……358 ms

const int MAXN=3e5;
const int LOG_N=18;
int n,a[MAXN+5],pre[MAXN+5],st[MAXN+5][LOG_N+2],res=0;
pii st_val[MAXN+5][LOG_N+2];
int query(int l,int r){
int k=31-__builtin_clz(r-l+1);
return max(st[l][k],st[r-(1<<k)+1][k]);
}
int query_ps(int l,int r){
int k=31-__builtin_clz(r-l+1);
return max(st_val[l][k],st_val[r-(1<<k)+1][k]).se;
}
void solve(int l,int r){
if(l>r) return;int ps=query_ps(l,r),len=a[ps];
solve(l,ps-1);solve(ps+1,r);
if(ps-l+1<=r-ps+1){
for(int i=l;i<=ps;i++) if(i+len-1<=r&&i+len-1>=ps&&query(i,i+len-1)<i)
res++;
} else {
for(int i=ps;i<=r;i++) if(i-len+1>=l&&i-len+1<=ps&&query(i-len+1,i)<i-len+1)
res++;
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),st_val[i][0]=mp(a[i],i);
for(int i=1;i<=n;i++) st[i][0]=pre[a[i]],pre[a[i]]=i;
for(int i=1;i<=LOG_N;i++) for(int j=1;j+(1<<i)-1<=n;j++){
st[j][i]=max(st[j][i-1],st[j+(1<<i-1)][i-1]);
st_val[j][i]=max(st_val[j][i-1],st_val[j+(1<<i-1)][i-1]);
} solve(1,n);printf("%d\n",res);
return 0;
}

Codeforces 1175F - The Number of Subpermutations(线段树+单调栈+双针/分治+启发式优化)的更多相关文章

  1. Codeforces 781E Andryusha and Nervous Barriers 线段树 单调栈

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF781E.html 题目传送门 - CF781E 题意 有一个矩形,宽为 w ,高为 h .一开始会有 w 个 ...

  2. 洛谷P4425 转盘 [HNOI/AHOI2018] 线段树+单调栈

    正解:线段树+单调栈 解题报告: 传送门! 1551又是一道灵巧连题意都麻油看懂的题,,,,所以先解释一下题意好了,,,, 给定一个n元环 可以从0时刻开始从任一位置出发 每次可以选择向前走一步或者在 ...

  3. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  4. 牛客多校第四场sequence C (线段树+单调栈)

    牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...

  5. [Codeforces1132G]Greedy Subsequences——线段树+单调栈

    题目链接: Codeforces1132G 题目大意:给定一个序列$a$,定义它的最长贪心严格上升子序列为$b$满足若$a_{i}$在$b$中则$a_{i}$之后第一个比它大的也在$b$中.给出一个数 ...

  6. BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)

    BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...

  7. AtCoder Regular Contest 063 F : Snuke’s Coloring 2 (线段树 + 单调栈)

    题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i ...

  8. cdqz2017-test10-rehearsal(CDQ分治&可持久化线段树&单调栈)

    题意: 给出n个三元组 e[i]=(si,ti,wi) 第i个三元组的价值为 Σ w[j] ,j 满足以下4个条件: 1.j<i 2.tj<ti 3.sj<si 4.不存在j< ...

  9. 2018.09.22 atcoder Snuke's Coloring 2(线段树+单调栈)

    传送门 就是给出一个矩形,上面有一些点,让你找出一个周长最大的矩形,满足没有一个点在矩形中. 这个题很有意思. 考虑到答案一定会穿过中线. 于是我们可以把点分到中线两边. 先想想暴力如何解决. 显然就 ...

随机推荐

  1. 【转】简述C和C++的学习历程

    简述C和C++的学习历程(转) --by:肖舸老师总是被同学们问到,如何学习C和C++才不茫然,才不是乱学,想了一下,这里给出一个总的回复. 一家之言,欢迎拍砖哈. 1.可以考虑先学习C. 大多数时候 ...

  2. 【二食堂】Beta - Scrum Meeting 9

    Scrum Meeting 9 例会时间:5.24 20:00~20:20 进度情况 组员 当前进度 今日任务 李健 1. 文本导入.保存部分未完成issue 2. 知识图谱导出的前端issue3. ...

  3. Noip模拟50 2021.9.10

    已经好长时间没有考试不挂分的良好体验了... T1 第零题 开场数据结构,真爽 对于这道题首先要理解对于一条链从上向下和从下向上走复活次数相等 (这可能需要晚上躺在被窝里面脑摸几种情况的样例) 然后就 ...

  4. STM32的I2C框图详解及通讯过程

    STM32 的I2C 特性及架构 如果我们直接控制STM32 的两个GPIO 引脚,分别用作SCL 及SDA,按照上述信号的时序要求,直接像控制LED 灯那样控制引脚的输出(若是接收数据时则读取SDA ...

  5. IDA*、剪枝、较难搜索、扫描——DNA sequence HDU - 1560

    万恶之源 翻译 题意就是给出N个DNA序列,要求出一个包含这n个序列的最短序列是多长 这是一道搜索题,为什么呢?从样例可以感受到,我们应该从左往右"扫描",从n个DNA序列中取出某 ...

  6. Spring Cloud Gateway夺命连环10问?

    大家好,我是不才陈某~ 最近有很多小伙伴私信我催更 <Spring Cloud 进阶>,陈某也总结了一下,最终原因就是陈某之前力求一篇文章将一个组件重要知识点讲透,这样导致了文章篇幅很长, ...

  7. linux rtl8188eu ap模式 密码错误 disassoc&#160;reason&#160;code(8)

    2018-05-30 14:12:46 于深圳南山科技园 最近有个项目,客户需要通过手机app通过机器wifi热点连接,从而实现对机器的设置及视频的实时预览等各种功能.这两天一直在搞rtl8188eu ...

  8. Vulnstack内网靶场4

    环境 漏洞详情 (qiyuanxuetang.net) 仅主机模式内网网段192.168.183.0/24 外网网段192.168.157.0/24 其中Ubuntu作为对外的内网机器 攻击机kali ...

  9. SpringMVC注解知识点

    SpringMVC注解知识点 SpringMVC原生知识点: 上一篇: https://www.cnblogs.com/yiur-bgy/p/14088883.html 注解版 1.新建一个Moudl ...

  10. Mysql基础教程:(七)MySQL基础练习

    MySQL基础练习 一.创建student和score表 CREATE TABLE student (id INT(10) NOT NULL PRIMARY KEY ,name VARCHAR(20) ...