\(\mathcal{Description}\)

  OurOJ.

  给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{and},\operatorname{or},\operatorname{xor}\}\),对于 \(i\in[2,n]\),求出 \(\max_{j\in[1,i)}\{a_i\operatorname{op} a_j\}\) 以及 \(|\arg\max_{j\in[1,i)}\{a_i\operatorname{op} a_j\}|\)。

  \(n\le10^5\),\(a_i<2^{16}\)。

\(\mathcal{Solution}\)

  也许算是 Meet in Middle?从左到右在线更新可用的 \(a_j\) 信息并求出对于当前 \(i\) 的答案,维护一个 \(f(u,v)\),表示选取的 \(a_j\) 的高八位是 \(u\) 且 \(a_i\) 的低八位是 \(v\) 时,低八位能得到的最大值以及方案数。那么更新时,用当前 \(a_j\) 的低八位更新所有 \(f(u,i)\);查询时枚举高八位选择的值 \(i\),并用 \(f(i,v)\) 更新答案。最终复杂度为 \(\mathcal O(n\sqrt A)\)。

  确实是比较巧妙的复杂度平衡,也是一个实用的 trick√

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef std::pair<int, int> PII;
#define fi first
#define se second const int MAXN = 1e5, MAXSV = 1 << 8;
int n, a[MAXN + 5];
char op[5];
PII f[MAXSV][MAXSV]; inline void update( const int x, const auto& opt ) {
int h = x >> 8, l = x ^ h << 8;
rep ( i, 0, MAXSV - 1 ) {
int v = opt( i, l );
if ( f[h][i].fi < v ) f[h][i] = { v, 1 };
else if ( f[h][i].fi == v ) ++f[h][i].se;
}
} inline PII query( const int x, const auto& opt ) {
int l = x & ( ( 1 << 8 ) - 1 );
PII ret( 0, 0 );
rep ( h, 0, MAXSV - 1 ) if ( f[h][l].se ) {
int cur = opt( h, x >> 8 ) << 8 | f[h][l].fi;
if ( ret.fi < cur ) ret = { cur, f[h][l].se };
else if ( ret.fi == cur ) ret.se += f[h][l].se;
}
return ret;
} inline void solve( const auto& opt ) {
update( a[1], opt );
rep ( i, 2, n ) {
PII ans( query( a[i], opt ) );
printf( "%d %d\n", ans.fi, ans.se ), update( a[i], opt );
}
} int main() {
scanf( "%d %s", &n, op );
rep ( i, 1, n ) scanf( "%d", &a[i] );
if ( op[0] == 'x' ) {
solve( []( const int u, const int v ) { return u ^ v; } );
} else if ( op[0] == 'a' ) {
solve( []( const int u, const int v ) { return u & v; } );
} else {
solve( []( const int u, const int v ) { return u | v; } );
}
return 0;
}

Solution -「LOCAL」二进制的世界的更多相关文章

  1. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  2. Solution -「LOCAL」过河

    \(\mathcal{Description}\)   一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...

  3. Solution -「LOCAL」Drainage System

    \(\mathcal{Description}\)   合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...

  4. Solution -「LOCAL」Burning Flowers

      灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\)   给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...

  5. Solution -「LOCAL」画画图

    \(\mathcal{Description}\)   OurTeam.   给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...

  6. Solution -「LOCAL」ZB 平衡树

    \(\mathcal{Description}\)   OurOJ.   维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...

  7. Solution -「LOCAL」舟游

    \(\mathcal{Description}\)   \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...

  8. Solution -「LOCAL」充电

    \(\mathcal{Description}\)   给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...

  9. Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy

    \(\mathcal{Description}\)   Link.(完全一致)   给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...

随机推荐

  1. koa路由接口

    const router = require('koa-router')() //返回一个页面 router.get('/', async (ctx, next) => { global.con ...

  2. centos7 常规修改信息(比较杂的)持续更新

    修改主机名 临时修改主机名 hostname syscal 永久修改主机名,修改后要重启系统 vi /etc/hostname 修改本地hosts 修改本地hosts,与windows的本地的host ...

  3. 日志收集系统系列(五)之LogTransfer

    从kafka里面把日志取出来,写入ES,使用Kibana做可视化展示 1. ElasticSearch 1.1 介绍 Elasticsearch(ES)是一个基于Lucene构建的开源.分布式.RES ...

  4. vue中使用window.resize并去抖动优化

    this.clientWidth = document.documentElement.clientWidth window.onresize = () => { this.clientWidt ...

  5. Zookeeper绍二(分布式锁介)

    一.为什么会有分布式锁? 在多线程环境下,由于上下文的切换,数据可能出现不一致的情况或者数据被污染,我们需要保证数据安全,所以想到了加锁. 所谓的加锁机制呢,就是当一个线程访问该类的某个数据时,进行保 ...

  6. ecos matlab版本安装

    官网链接 github地址 1.注意不仅要下载matlab版本,同时还要下载c版本,因为matlab版本缺少第三方软件,将两个版本解压缩后将c版本下的文件夹external,ecos_bb,inclu ...

  7. [CAN波形分析] 一次CAN波形分析之旅

    Prepare CAN通信协议使用了有一段时间了,但都是基于软件层面的使用,对于其波形不是很了解,正好这段时间比较闲,是时候补补硬知识. 开始之前,先介绍一下设备: 咸鱼淘来的古董级别示波器GDS-2 ...

  8. 集合框架-工具类-Arrays-asList方法

    1 package cn.itcast.p3.toolclass.arrays.demo; 2 3 import java.util.ArrayList; 4 import java.util.Arr ...

  9. Telegra.ph | 简洁的文章发布平台

    https://telegra.ph 自由 Telegraph 并不强调内容管理方这一概念,真正做到了「人人都是媒体」.通过 Telegraph 发布的文章,理论上来说不会存在删除的危险,并且由于会产 ...

  10. Nginx限制连接控制访问量

    目录 一:限制连接数模块(同时访问网址能访问多少次) 1.修改网址模块文件 2.测试 3.重启 4.增加解析ip 5.压力测试 二:控制Nginx访问量 1.连接池 2.限制数 3.测试 4.重启 5 ...