第一次用卷积,看的别人的模型跑的CIFAR-10,不过吐槽一下。。。我觉着我的965m加速之后比我的cpu算起来没快多少。。正确率64%的样子,没达到模型里说的75%,不知道问题出在哪里

import numpy as np
import os
import mxnet as mx
import logging
import cPickle def unpickle(file):
with open(file,'rb') as fo:
dict = cPickle.load(fo)
return np.array(dict['data']).reshape(10000,3072),np.array(dict['labels']).reshape(10000) def to4d(img):
return img.reshape(img.shape[0],3,32,32).astype(np.float32)/255 def fit(batch_num,model,val_iter,batch_size):
(train_img, train_lbl) = unpickle('cifar-10/data_batch_'+str(batch_num))
train_iter = mx.io.NDArrayIter(to4d(train_img), train_lbl, batch_size, shuffle=True)
model.fit(
X=train_iter,
eval_data=val_iter,
batch_end_callback=mx.callback.Speedometer(batch_size,200)
) (val_img, val_lbl) = unpickle('cifar-10/test_batch') batch_size = 100
val_iter = mx.io.NDArrayIter(to4d(val_img),val_lbl,batch_size) data = mx.sym.Variable('data')
cv1 = mx.sym.Convolution(data=data,name='cv1',num_filter=32,kernel=(3,3))
act1 = mx.sym.Activation(data=cv1,name='relu1',act_type='relu')
poing1 = mx.sym.Pooling(data=act1,name='poing1',kernel=(2,2),pool_type='max')
do1 = mx.sym.Dropout(data=poing1,name='do1',p=0.25)
cv2 = mx.sym.Convolution(data=do1,name='cv2',num_filter=32,kernel=(3,3))
act2 = mx.sym.Activation(data=cv2,name='relu2',act_type='relu')
poing2 = mx.sym.Pooling(data=act2,name='poing2',kernel=(2,2),pool_type='avg')
do2 = mx.sym.Dropout(data=poing2,name='do2',p=0.25)
cv3 = mx.sym.Convolution(data=do2,name='cv3',num_filter=64,kernel=(3,3))
act3 = mx.sym.Activation(data=cv3,name='relu3',act_type='relu')
poing3 = mx.sym.Pooling(data=act3,name='poing3',kernel=(2,2),pool_type='avg')
do3 = mx.sym.Dropout(data=poing3,name='do3',p=0.25)
data = mx.sym.Flatten(data=do3)
fc1 = mx.sym.FullyConnected(data=data,name='fc1',num_hidden=64)
act4 = mx.sym.Activation(data=fc1,name='relu4',act_type='relu')
do4 = mx.sym.Dropout(data=act4,name='do4',p=0.25)
fc2 = mx.sym.FullyConnected(data=do4,name='fc2',num_hidden=10)
mlp = mx.sym.SoftmaxOutput(data=fc2,name='softmax') logging.getLogger().setLevel(logging.DEBUG) model = mx.model.FeedForward(
ctx=mx.gpu(0),
symbol=mlp,
num_epoch=10,
learning_rate=0.1
)
for batch_num in range(1,6):
fit(batch_num, model, val_iter, batch_size)

MXNet学习:试用卷积-训练CIFAR-10数据集的更多相关文章

  1. Keras学习:试用卷积-训练CIFAR-10数据集

    import numpy as np import cPickle import keras as ks from keras.layers import Dense, Activation, Fla ...

  2. 【翻译】TensorFlow卷积神经网络识别CIFAR 10Convolutional Neural Network (CNN)| CIFAR 10 TensorFlow

    原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, ...

  3. 可变卷积Deforable ConvNet 迁移训练自己的数据集 MXNet框架 GPU版

    [引言] 最近在用可变卷积的rfcn 模型迁移训练自己的数据集, MSRA官方使用的MXNet框架 环境搭建及配置:http://www.cnblogs.com/andre-ma/p/8867031. ...

  4. 【神经网络与深度学习】基于Windows+Caffe的Minst和CIFAR—10训练过程说明

    Minst训练 我的路径:G:\Caffe\Caffe For Windows\examples\mnist  对于新手来说,初步完成环境的配置后,一脸茫然.不知如何跑Demo,有么有!那么接下来的教 ...

  5. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

  6. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

  7. YOLO训练自己的数据集的一些心得

    YOLO训练自己的数据集 YOLO-darknet训练自己的数据 [Darknet][yolo v2]训练自己数据集的一些心得----VOC格式 YOLO模型训练可视化训练过程中的中间参数 项目开源代 ...

  8. 【Tensorflow系列】使用Inception_resnet_v2训练自己的数据集并用Tensorboard监控

    [写在前面] 用Tensorflow(TF)已实现好的卷积神经网络(CNN)模型来训练自己的数据集,验证目前较成熟模型在不同数据集上的准确度,如Inception_V3, VGG16,Inceptio ...

  9. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

随机推荐

  1. 微信小程序开发 --- 小白之路 --- 心得

    1.前言 今天 ,发现我的饭卡不见了....悲催 ,看了一下学校的微信小程序,查了下我这饭卡的流水记录,嗯...最后出现的地方在洗澡房... 好吧,扯远了,虽然没找到,可是突发奇想 ,小程序挺方便的, ...

  2. 基于LNMP环境的Zabbix监控安装

    一.准备LNMP环境 1.使用putty或类似的SSH工具登陆VPS或服务器: 登陆后运行:screen -S lnmp 如果提示screen: command not found 命令不存在可以执行 ...

  3. 虚拟机上CentOS7网络配置

    如果图片损坏:点击链接:https://www.toutiao.com/i6493449418249863693/ 设置网络 首先打开虚拟网络编辑器 权限打开 选择NAT模式,设置IP 应用确定之后, ...

  4. Sentry 开发者贡献指南 - Django Rest Framework(Serializers)

    Serializer 用于获取复杂的 python 模型并将它们转换为 json.序列化程序还可用于在验证传入数据后将 json 反序列化回 Python 模型. 在 Sentry,我们有两种不同类型 ...

  5. dubbo系列二、dubbo请求流程记录

    目录 1.dubbo请求处理流程 1.1. consumer端处理流程 1.2.provider端处理流程 1.3.dubbo请求分析记录-图 泳道图 xmind图 2.dubbo请求核心说明 1.d ...

  6. java日志打印使用指南

    一.简介 日志打印是java代码开发中不可缺少的重要一步. 日志可以排查问题,可以搜集数据 二.常用日志框架 比较常用的日志框架就是logback, 一些老项目会使用log4j,他们用的都是slf4j ...

  7. 记录ABAP开发的日常——SAP_PO开发同步接口案例

    前言:在项目中遇到任务PO接口,需求是SRM发送采购订单信息给SAP,SAP根据信息调用BAPI同步数据,在此作为案例记录. 本次接口采用的协议是SOAP,当然也有其他的协议比如REST等等,在此不做 ...

  8. url地址如何定位到Servlet程序去访问

  9. Kubernetes 证书默认1年过期时间修改

    使用过的kubeadm搭建K8s集群的朋友知道,默认自动生成的证书有效期只有 1 年,因此需要每年手动更新一次证书,这种形式显然对实际生产环境来说很不友好:因此下面教给大家修改这个过期时间的终极方法. ...

  10. [JavaWeb]Log4j的前因后果

    Log4j的前因后果 简介 Log4j的进化史 Log4J的三大组件: Logger:日志记录器,负责收集处理日志记录 (如何处理日志) Appender:日志输出目的地,负责日志的输出 (输出到什么 ...