完全二叉树:

空树不是完全二叉树,叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空;则该节点之后的队列中的结点都为叶子节点;该树才是完全二叉树,否则就不是完全二叉树;

具有n个节点的完全二叉树深为log2x+1(其中x表示不大于n的最大整数)

满二叉树:

除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树。

 二叉搜索树(二叉排序树、又称二叉查找树):

可以为空树,或者是具备如下性质:若它的左子树不空,则左子树上的所有结点的值均小于根节点的值;若它的右子树不空,则右子树上的所有结点的值均大于根节点的值,左右子树分别为二叉排序树。

理论上说,二叉搜索树的查询、插入、和删除一个节点的时间复杂度均为O(log(n))

但是还有一种特殊情况:

这种情况下,二叉搜索树已经变更为链表,搜索一个元素的时间复杂度也变成了O(n)

出现这种情况的原因是二叉搜索树没有自平衡的机制,所以就有了平衡二叉树。

平衡二叉树(是一种概念,它有几种实现方式:红黑树、AVL树)

它是一个空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是平衡二叉树

当AVL树插入一个节点时,如果平衡因子已经大于1了,这个时候就要进行左旋、右旋使之平衡因子恢复为1

红黑树

红黑树是一种平衡二叉查找树的变体,它的左右子树高差有可能大于 1,所以红黑树不是严格意义上的平衡二叉树(AVL),但 对之进行平衡的代价较低, 其平均统计性能要强于 AVL 。

红黑树和AVL树的区别:

RB-Tree和AVL树作为BBST,其实现的算法时间复杂度相同,AVL作为最先提出的BBST,貌似RB-tree实现的功能都可以用AVL树是代替,那么为什么还需要引入RB-Tree呢?

  1. 红黑树不追求"完全平衡",即不像AVL那样要求节点的 |balFact| <= 1,它只要求部分达到平衡,但是提出了为节点增加颜色,红黑是用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决,而AVL是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多。
  2. 就插入节点导致树失衡的情况,AVL和RB-Tree都是最多两次树旋转来实现复衡rebalance,旋转的量级是O(1)

    删除节点导致失衡,AVL需要维护从被删除节点到根节点root这条路径上所有节点的平衡,旋转的量级为O(logN),而RB-Tree最多只需要旋转3次实现复衡,只需O(1),所以说RB-Tree删除节点的rebalance的效率更高,开销更小!
  3. AVL的结构相较于RB-Tree更为平衡,插入和删除引起失衡,如2所述,RB-Tree复衡效率更高;当然,由于AVL高度平衡,因此AVL的Search效率更高啦。
  4. 针对插入和删除节点导致失衡后的rebalance操作,红黑树能够提供一个比较"便宜"的解决方案,降低开销,是对search,insert ,以及delete效率的折衷,总体来说,RB-Tree的统计性能高于AVL.
  5. 故引入RB-Tree是功能、性能、空间开销的折中结果

    5.1 AVL更平衡,结构上更加直观,时间效能针对读取而言更高;维护稍慢,空间开销较大。

    5.2 红黑树,读取略逊于AVL,维护强于AVL,空间开销与AVL类似,内容极多时略优于AVL,维护优于AVL。

总结:实际应用中,若搜索的次数远远大于插入和删除,那么选择AVL,如果搜索,插入删除次数几乎差不多,应该选择RB-Tree。

红黑树是一种含有红黑结点并能自平衡的二叉查找树。它必须除了满足二叉搜索树的性质外,还要满足下面的性质:

性质1:每个节点要么是黑色,要么是红色。

性质2:根节点是黑色。
性质3:每个叶子节点(NIL)是黑色。
性质4:每个红色结点的两个子结点一定都是黑色。
性质5:任意一结点到每个叶子结点的路径都包含数量相同的黑结点。

我们知道Mysql Innodb存储引擎的索引的数据结构为B+树,那么什么是B+树呢?

先来了解下B树:

一种平衡的多叉树,称为B树(或B-树、B_树)

一棵m阶B树(balanced tree of order m)是一棵平衡的m路搜索树。它或者是空树,或者是满足下列性质的树:
1、根结点至少有两个子女;
2、每个非根节点所包含的关键字个数 j 满足:┌m/2┐ - 1 <= j <= m - 1;
3、除根结点以外的所有结点(不包括叶子结点)的度数正好是关键字总数加1,故内部子树个数 k 满足:┌m/2┐ <= k <= m ;
4、所有的叶子结点都位于同一层。
简单理解为:平衡多叉树为B树(每一个子节点上都是有数据的),叶子节点之间无指针相邻
 
什么是B+树呢?
B+树是B树的一种变形形式,B+树上的叶子结点存储关键字以及相应记录的地址,叶子结点以上各层作为索引使用。一棵m阶的B+树定义如下
(1)每个结点至多有m个子女;
(2)除根结点外,每个结点至少有[m/2]个子女,根结点至少有两个子女;
(3)有k个子女的结点必有k个关键字。
B+树的查找与B树不同,当索引部分某个结点的关键字与所查的关键字相等时,并不停止查找,应继续沿着这个关键字左边的指针向下,一直查到该关键字所在的叶子结点为止。

特点:

数据只出现在叶子节点

所有叶子节点增加了一个链指针

简单总结:mysql中的innodb为什么用B+树不使用B树

1.B树把数据放在了每个节点上,而B+树把数据放在了叶子节点上,所以单个查询速度B+平均要快于B树,但是B-树的每个节点都有data域(指针),这无疑增大了节点大小,说白了增加了磁盘IO次数(磁盘IO一次读出的数据量大小是固定的,单个数据变大,每次读出的就少,IO次数增多),而B+树除了叶子节点其它节点并不存储数据,节点小,磁盘IO次数就少。

2.另一方面,由于B+树有链指针,所以更方便区间查询。

https://www.jianshu.com/p/37436ed14cc6

https://mp.weixin.qq.com/s/9s6c1sPN7avqwxZC7BsVUQ

二叉搜索树、平衡二叉树、红黑树、B树、B+树的更多相关文章

  1. 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树

    1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...

  2. L2-004 这是二叉搜索树吗? (25 分) (树)

    链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805070971912192 题目: 一棵二叉搜索树可被递归地定义为 ...

  3. Leetcode 538. 把二叉搜索树转换为累加树

    题目链接 https://leetcode.com/problems/convert-bst-to-greater-tree/description/ 题目描述 大于它的节点值之和. 例如: 输入: ...

  4. Java实现二叉搜索树的添加,前序、后序、中序及层序遍历,求树的节点数,求树的最大值、最小值,查找等操作

    什么也不说了,直接上代码. 首先是节点类,大家都懂得 /** * 二叉树的节点类 * * @author HeYufan * * @param <T> */ class Node<T ...

  5. 算法二叉搜索树之AVL树

    最近学习了二叉搜索树中的AVL树,特在此写一篇博客小结. 1.引言 对于二叉搜索树而言,其插入查找删除等性能直接和树的高度有关,因此我们发明了平衡二叉搜索树.在计算机科学中,AVL树是最先发明的自平衡 ...

  6. [Swift]LeetCode538. 把二叉搜索树转换为累加树 | Convert BST to Greater Tree

    Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original B ...

  7. 538 Convert BST to Greater Tree 把二叉搜索树转换为累加树

    给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和.例如:输入: 二叉搜索树:     ...

  8. LeetCode 把二叉搜索树转换为累加树

    第538题 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和. 例如: 输入: 二叉 ...

  9. [LeetCode] 538. 把二叉搜索树转换为累加树 ☆(中序遍历变形)

    把二叉搜索树转换为累加树 描述 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和. ...

  10. Java实现 LeetCode 538 把二叉搜索树转换为累加树(遍历树)

    538. 把二叉搜索树转换为累加树 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和 ...

随机推荐

  1. coding game, 边打游戏边学编程,是一种怎么样的体验?

    前言 hello,大家好,我是bigsai,好久不见,甚是想念! 在日常生活中,很多人喜欢玩游戏,因为游戏中有着对抗博弈.控制的喜悦,用灵魂指法完成一波靓丽的操作. 但实际上,你的按键都是对应代码中一 ...

  2. 一个校验接口引发的思考--我真的了解Response吗

    一个校验接口 最近,我需要对接一个外部接口,基本功能是:校验指定的门店是否完善了货运信息.接口大致是这样的: POST https://******/Dealer/CheckCarrier Heads ...

  3. Python编程环境设置

    第1节.Python编程环境设置 一.sublime相关 1.sublime REPL插件安装 (1)安装 先打开插件安装面板:ctrl+shift+P 输入install ,选择Package Co ...

  4. APM监控--(三)zipkin部署手册

    一,基础知识储备分布式跟踪的目标一个分布式系统由若干分布式服务构成,每一个请求会经过多个业务系统并留下足迹,但是这些分散的数据对于问题排查,或是流程优化都很有限,要能做到追踪每个请求的完整链路调用,收 ...

  5. java-通过IO流复制文件夹到指定目录

    public class copyDirectoryDemo { public static void main(String[] args) { File srcFolder = new File( ...

  6. 统计学习2:线性可分支持向量机(Scipy实现)

    1. 模型 1.1 超平面 我们称下面形式的集合为超平面 \[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned ...

  7. 洛谷 P3214 - [HNOI2011]卡农(线性 dp)

    洛谷题面传送门 又是一道我不会的代码超短的题( 一开始想着用生成函数搞,结果怎么都搞不粗来/ll 首先不妨假设音阶之间存在顺序关系,最终答案除以 \(m!\) 即可. 本题个人认为一个比较亮的地方在于 ...

  8. CF1437G Death DBMS

    题面传送门. 题意简述:给出 \(n\) 个字符串 \(s_i\),每个 \(s_i\) 初始权值为 \(0\).\(q\) 次操作:修改 \(s_i\) 的权值:查询给出字符串 \(q\) 能匹配的 ...

  9. Assemblytics鉴定基因组间SV

    Assemblytics, 发表在Bioinformaticshttp://www.ncbi.nlm.nih.gov/pubmed/27318204,鉴定基因组间SV. Githup,https:// ...

  10. 【GS文献】植物育种中基因组选择的方法、模型及展望

    目录 1. GS/GP在植物育种中的角色 2. GP模型应用 3. GP模型的准确性 4. 植物育种的GS展望 5. 小结 Genomic SelectioninPlant Breeding: Met ...