要说现在工程师最重要的能力,我觉得工程能力要排第一。

就算现在大厂面试经常要手撕算法,也是更偏向考查代码工程实现的能力,之前在群里看到这样的图片,就觉得很离谱。

算法与工程实现

在 Sentinel-Go 中,一个很核心的算法是流控(限流)算法。

流控可能每个人都听过,但真要手写一个,还是有些困难。为什么流控算法难写?以我的感觉是算法和工程实现上存在一定差异,虽然算法好理解,但却没法照着实现。

举个例子,令牌桶算法很好理解,只需给定一个桶,以恒定的速率往桶内放令牌,满了则丢弃,执行任务前先去桶里拿令牌,只有拿到令牌才可以执行,否则拒绝。

如果实现令牌桶,按道理应该用一个单独线程(或进程)往桶里放令牌,业务线程去桶里取,但真要这么实现,怎么保证这个单独线程能稳定执行,万一挂了岂不是很危险?

所以工程实现上和算法原本肯定存在一定的差异,这也是为什么需要深入源码的一个原因。

滑动时间窗口的演进

通常来说,流控的度量是按每秒的请求数,也就是 QPS

QPS:query per second,指每秒查询数,当然他的意义已经泛化了,不再特指查询,可以泛指所有请求。如果非要区分,TPS 指每秒事务数,即写入数,或 RPS,每秒请求数,本文不分这么细,统计叫QPS。

当然也有按并发数来度量,并发数的流控就非常简单

并发数流控

并发是一个瞬时概念,它跟时间没有关系。和进程中的线程数、协程数一样,每次取的时候只能拿到一个瞬间的快照,但可能很快就变化了。

并发数怎么定义?可以近似认为进入业务代码开始就算一个并发,执行完这个并发就消失。

这样说来,实现就非常简单了,只需要定义一个全局变量,责任链开始时对这个变量原子增1,并获取当前并发数的一个快照,判断并发数是否超限,如果超限则直接阻断,执行完了别忘了原子减1即可,由于太过简单,就不需要放代码了。

固定时间窗口

参考并发数流控,当需要度量 QPS 时,是否也可以利用这样的思想呢?

由于 QPS 有时间的度量,第一直觉是和并发数一样弄个变量,再起个单独线程每隔 1s 重置这个变量。

但单独线程始终不放心,需要稍微改一下。

如果系统有一个起始时间,每次请求时,获取当前时间,两者之差,就能算出当前处于哪个时间窗口,这个时间窗口单独计数即可。

如果稍微思考下,你会发现问题不简单,如下图,10t 到20t 只有60个请求,20t到30t之间只有80个请求,但有可能16t到26t之间有110个请求,这就很有可能把系统打垮。

滑动时间窗口

为了解决上面的问题,工程师想出了一个好办法:别固定时间窗口,以当前时间往前推算窗口

但问题又来了,这该怎么实现呢?

滑动时间窗口工程实现

在工程实现上,可以将时间划分为细小的采样窗口,缓存一段时间的采样窗口,这样每当请求来的时候,只需要往前拿一段时间的采样窗口,然后求和就能拿到总的请求数。

Sentinel-Go 滑动时间窗口的实现

前方代码高能预警~

Sentinel-Go 是基于 LeapArray 实现的滑动窗口,其数据结构如下

type LeapArray struct {
bucketLengthInMs uint32 // bucket大小
sampleCount uint32 // bucket数量
intervalInMs uint32 // 窗口总大小
array *AtomicBucketWrapArray // bucket数组
updateLock mutex // 更新锁
} type AtomicBucketWrapArray struct {
base unsafe.Pointer // 数组的起始地址
length int // 长度,不能改变
data []*BucketWrap // 真正bucket的数据
} type BucketWrap struct {
BucketStart uint64 // bucket起始时间
Value atomic.Value // bucket数据结构,例如 MetricBucket
} type MetricBucket struct {
counter [base.MetricEventTotal]int64 // 计数数组,可放不同类型
minRt int64 // 最小RT
maxConcurrency int32 // 最大并发数
}

再看下是如何写入指标的,例如当流程正常通过时

// ①
sn.AddCount(base.MetricEventPass, int64(count)) // ②
func (bla *BucketLeapArray) AddCount(event base.MetricEvent, count int64) {
bla.addCountWithTime(util.CurrentTimeMillis(), event, count)
} // ③
func (bla *BucketLeapArray) addCountWithTime(now uint64, event base.MetricEvent, count int64) {
b := bla.currentBucketWithTime(now)
if b == nil {
return
}
b.Add(event, count)
} // ④
func (mb *MetricBucket) Add(event base.MetricEvent, count int64) {
if event >= base.MetricEventTotal || event < 0 {
logging.Error(errors.Errorf("Unknown metric event: %v", event), "")
return
}
if event == base.MetricEventRt {
mb.AddRt(count)
return
}
mb.addCount(event, count)
} // ⑤
func (mb *MetricBucket) addCount(event base.MetricEvent, count int64) {
atomic.AddInt64(&mb.counter[event], count)
}

取到相应的 bucket,然后写入相应 event 的 count,对 RT 会特殊处理,因为有一个最小 RT 需要处理。

重点看是如何取到相应的 bucket 的:

func (bla *BucketLeapArray) currentBucketWithTime(now uint64) *MetricBucket {
// ①根据当前时间取bucket
curBucket, err := bla.data.currentBucketOfTime(now, bla)
...
b, ok := mb.(*MetricBucket)
if !ok {
...
return nil
}
return b
} func (la *LeapArray) currentBucketOfTime(now uint64, bg BucketGenerator) (*BucketWrap, error) {
...
// ②计算index = (now / bucketLengthInMs) % LeapArray.array.length
idx := la.calculateTimeIdx(now)
// ③计算bucket开始时间 = now - (now % bucketLengthInMs)
bucketStart := calculateStartTime(now, la.bucketLengthInMs) for {
old := la.array.get(idx)
if old == nil { // ④未使用,直接返回
newWrap := &BucketWrap{
BucketStart: bucketStart,
Value: atomic.Value{},
}
newWrap.Value.Store(bg.NewEmptyBucket())
if la.array.compareAndSet(idx, nil, newWrap) {
return newWrap, nil
} else {
runtime.Gosched()
}
} else if bucketStart == atomic.LoadUint64(&old.BucketStart) { // ⑤刚好取到是当前bucket,返回
return old, nil
} else if bucketStart > atomic.LoadUint64(&old.BucketStart) { // ⑥取到了旧的bucket,重置使用
if la.updateLock.TryLock() {
old = bg.ResetBucketTo(old, bucketStart)
la.updateLock.Unlock()
return old, nil
} else {
runtime.Gosched()
}
} else if bucketStart < atomic.LoadUint64(&old.BucketStart) { // ⑦取到了比当前还新的bucket,总共只有一个bucket时,并发情况可能会出现这种情况,其他情况不可能,直接报错
if la.sampleCount == 1 {
return old, nil
} return nil, errors.New(fmt.Sprintf("Provided time timeMillis=%d is already behind old.BucketStart=%d.", bucketStart, old.BucketStart))
}
}
}

举个直观的例子,看如何拿到 bucket:

  • 假设 B2 取出来是 nil,则 new 一个 bucket 通过 compareAndSet 写入,保证线程安全,如果别别的线程先写入,这里会执行失败,调用 runtime.Gosched(),让出时间片,进入下一次循环
  • 假设取出 B2 的开始时间是3400,与计算的相同,则直接使用
  • 假设取出的 B2 的开始时间小于 3400,说明这个 bucket 太旧了,需要覆盖,使用更新锁来更新,保证线程安全,如果拿不到锁,也让出时间片,进入下一次循环
  • 假设取出 B2 的开始时间大于3400,说明已经有其他线程更新了,而 bucketLengthInMs 通常远远大于锁的获取时间,所以这里只考虑只有一个 bucket 的情况直接返回,其他情况报错

回到 QPS 计算:

qps := stat.InboundNode().GetQPS(base.MetricEventPass)

该方法会先计算一个起始时间范围

func (m *SlidingWindowMetric) getBucketStartRange(timeMs uint64) (start, end uint64) {
curBucketStartTime := calculateStartTime(timeMs, m.real.BucketLengthInMs())
end = curBucketStartTime
start = end - uint64(m.intervalInMs) + uint64(m.real.BucketLengthInMs())
return
}

例如当前时间为3500,则计算出

  • end = 3400
  • start = 3400 - 1200 + 200 = 2400

然后遍历所有 bucket,把在这个范围内的 bucket 都拿出来,计算 QPS,只需要相加即可。

最后

本节从滑动窗口流控算法的工程实现演进到 Sentinel-Go 里滑动窗口的实现,从 Sentinel-Go 的实现上看到,还得考虑内存的使用,并发控制等等,如果完全写出来,还是非常不容易的。

《Sentinel-Go源码系列》已经写了三篇,只介绍了两个知识点:责任链模式、滑动窗口限流,后续还有对象池等,但这其实和 Sentinel-Go 关系不是很大,到时候单独成文,就不放在本系列里了。

本文算是一个结束,与其说是结束,不如说是一个开始。


搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。

Sentinel-Go 源码系列(三)滑动时间窗口算法的工程实现的更多相关文章

  1. Spring源码系列(三)--spring-aop的基础组件、架构和使用

    简介 前面已经讲完 spring-bean( 详见Spring ),这篇博客开始攻克 Spring 的另一个重要模块--spring-aop. spring-aop 可以实现动态代理(底层是使用 JD ...

  2. 深入seajs源码系列三

    入口方法 每个程序都有个入口方法,类似于c的main函数,seajs也不例外.系列一的demo在首页使用了seajs.use(),这便是入口方法.入口方法可以接受2个参数,第一个参数为模块名称,第二个 ...

  3. 框架源码系列三:手写Spring AOP(AOP分析、AOP概念学习、切面实现、织入实现)

    一.AOP分析 问题1:AOP是什么? Aspect Oriented Programming 面向切面编程,在不改变类的代码的情况下,对类方法进行功能增强. 问题2:我们需要做什么? 在我们的框架中 ...

  4. 手牵手,从零学习Vue源码 系列一(前言-目录篇)

    系列文章: 手牵手,从零学习Vue源码 系列一(前言-目录篇) 手牵手,从零学习Vue源码 系列二(变化侦测篇) 手牵手,从零学习Vue源码 系列三(虚拟DOM篇) 陆续更新中... 预计八月中旬更新 ...

  5. Spring源码系列(四)--spring-aop是如何设计的

    简介 spring-aop 用于生成动态代理类(底层是使用 JDK 动态代理或 cglib 来生成代理类),搭配 spring-bean 一起使用,可以使 AOP 更加解耦.方便.在实际项目中,spr ...

  6. 使用react全家桶制作博客后台管理系统 网站PWA升级 移动端常见问题处理 循序渐进学.Net Core Web Api开发系列【4】:前端访问WebApi [Abp 源码分析]四、模块配置 [Abp 源码分析]三、依赖注入

    使用react全家桶制作博客后台管理系统   前面的话 笔者在做一个完整的博客上线项目,包括前台.后台.后端接口和服务器配置.本文将详细介绍使用react全家桶制作的博客后台管理系统 概述 该项目是基 ...

  7. hbase源码系列(十二)Get、Scan在服务端是如何处理

    hbase源码系列(十二)Get.Scan在服务端是如何处理?   继上一篇讲了Put和Delete之后,这一篇我们讲Get和Scan, 因为我发现这两个操作几乎是一样的过程,就像之前的Put和Del ...

  8. Java源码系列2——HashMap

    HashMap 的源码很多也很复杂,本文只是摘取简单常用的部分代码进行分析.能力有限,欢迎指正. HASH 值的计算 前置知识--位运算 按位异或操作符^:1^1=0, 0^0=0, 1^0=0, 值 ...

  9. 【Tomcat 源码系列】源码构建 Tomcat

    一,前言 这篇博客写于 12 月 12 日,从 github[1] 上 fork 了一份 tomcat 的源代码,clone 到了本地.最近想把 tomcat 的源代码分析一下,寒假的时候有完整的时间 ...

随机推荐

  1. [noi34]palindrome

    分割实际上就是不断地从两端取出一样的一段,并对剩下的串进行分割.下面我们来证明一下每一次贪心取出最短一段的正确性: 考虑两种分割方式,分别表示成S=A+B+A和S=C+D+C,其中A就是最短的一段,那 ...

  2. 【IDEA】IntelliJ IDEA 2020.1破解版

    IntelliJ IDEA 2020.1破解版 2020-09-09  14:58:56  by冲冲 安装链接: 1. 百度网盘下载地址链接:https://pan.baidu.com/s/1cxjz ...

  3. C#使用Thrift作为RPC框架入门(三)之三层架构

    前言 这是我们讲解Thrift框架的第三篇文章,前两篇我们讲了Thrift作为RPC框架的基本用法以及架构的设计.为了我们更好的使用和理解Thrift框架,接下来,我们将来学习一下Thrift框架提供 ...

  4. 数值分析:幂迭代和PageRank算法(Numpy实现)

    1. 幂迭代算法(简称幂法) (1) 占优特征值和占优特征向量 已知方阵\(\bm{A} \in \R^{n \times n}\), \(\bm{A}\)的占优特征值是比\(\bm{A}\)的其他特 ...

  5. Atcoder M-SOLUTIONS Programming Contest C - Best-of-(2n-1)(无穷级数求和+组合恒等式)

    Atcoder 题面传送门 & 洛谷题面传送门 无穷级数求和的简单题,稍微写写吧,正好也算帮我回忆下组合数这一块的内容. 首先我们不妨假设 A 赢,B 赢的情况就直接镜像一下即可.我们枚举 B ...

  6. plink 进行PCA分析

    当我们进行群体遗传分析时,得到vcf后,可利用plink进行主成分(PCA)分析: 一.软件安装 1 conda install plink 二.使用流程 第一步:将vcf转换为plink格式 1 p ...

  7. shell编程100列

    1.编写hello world脚本 #!/bin/bash# 编写hello world脚本 echo "Hello World!"2.通过位置变量创建 Linux 系统账户及密码 ...

  8. 10 — springboot整合mybatis — 更新完毕

    1.xml版 -- 复杂sql使用xml,简单sql使用注解 1).导入依赖 <!-- mybatis-spring-boot-starter是第三方( mybatis )jar包,不是spri ...

  9. college-ruled notebook

    TBBT.s3.e10: Sheldon: Where's your notebook?Penny: Um, I don't have one.Sheldon: How are you going t ...

  10. Qt5的安装和编译

    Ubuntu18.04安装Qt5 1.配置unbuntu 和宿主机共享文件夹安装vmware-tools 2.下载 Qt  http://download.qt.io/archive/qt/ 3.修改 ...