Sentinel-Go 源码系列(三)滑动时间窗口算法的工程实现
要说现在工程师最重要的能力,我觉得工程能力要排第一。
就算现在大厂面试经常要手撕算法,也是更偏向考查代码工程实现的能力,之前在群里看到这样的图片,就觉得很离谱。

算法与工程实现
在 Sentinel-Go 中,一个很核心的算法是流控(限流)算法。
流控可能每个人都听过,但真要手写一个,还是有些困难。为什么流控算法难写?以我的感觉是算法和工程实现上存在一定差异,虽然算法好理解,但却没法照着实现。
举个例子,令牌桶算法很好理解,只需给定一个桶,以恒定的速率往桶内放令牌,满了则丢弃,执行任务前先去桶里拿令牌,只有拿到令牌才可以执行,否则拒绝。
如果实现令牌桶,按道理应该用一个单独线程(或进程)往桶里放令牌,业务线程去桶里取,但真要这么实现,怎么保证这个单独线程能稳定执行,万一挂了岂不是很危险?
所以工程实现上和算法原本肯定存在一定的差异,这也是为什么需要深入源码的一个原因。
滑动时间窗口的演进
通常来说,流控的度量是按每秒的请求数,也就是 QPS
QPS:query per second,指每秒查询数,当然他的意义已经泛化了,不再特指查询,可以泛指所有请求。如果非要区分,TPS 指每秒事务数,即写入数,或 RPS,每秒请求数,本文不分这么细,统计叫QPS。
当然也有按并发数来度量,并发数的流控就非常简单
并发数流控
并发是一个瞬时概念,它跟时间没有关系。和进程中的线程数、协程数一样,每次取的时候只能拿到一个瞬间的快照,但可能很快就变化了。
并发数怎么定义?可以近似认为进入业务代码开始就算一个并发,执行完这个并发就消失。

这样说来,实现就非常简单了,只需要定义一个全局变量,责任链开始时对这个变量原子增1,并获取当前并发数的一个快照,判断并发数是否超限,如果超限则直接阻断,执行完了别忘了原子减1即可,由于太过简单,就不需要放代码了。
固定时间窗口
参考并发数流控,当需要度量 QPS 时,是否也可以利用这样的思想呢?
由于 QPS 有时间的度量,第一直觉是和并发数一样弄个变量,再起个单独线程每隔 1s 重置这个变量。
但单独线程始终不放心,需要稍微改一下。
如果系统有一个起始时间,每次请求时,获取当前时间,两者之差,就能算出当前处于哪个时间窗口,这个时间窗口单独计数即可。

如果稍微思考下,你会发现问题不简单,如下图,10t 到20t 只有60个请求,20t到30t之间只有80个请求,但有可能16t到26t之间有110个请求,这就很有可能把系统打垮。

滑动时间窗口
为了解决上面的问题,工程师想出了一个好办法:别固定时间窗口,以当前时间往前推算窗口

但问题又来了,这该怎么实现呢?
滑动时间窗口工程实现
在工程实现上,可以将时间划分为细小的采样窗口,缓存一段时间的采样窗口,这样每当请求来的时候,只需要往前拿一段时间的采样窗口,然后求和就能拿到总的请求数。

Sentinel-Go 滑动时间窗口的实现
前方代码高能预警~
Sentinel-Go 是基于 LeapArray 实现的滑动窗口,其数据结构如下
type LeapArray struct {
bucketLengthInMs uint32 // bucket大小
sampleCount uint32 // bucket数量
intervalInMs uint32 // 窗口总大小
array *AtomicBucketWrapArray // bucket数组
updateLock mutex // 更新锁
}
type AtomicBucketWrapArray struct {
base unsafe.Pointer // 数组的起始地址
length int // 长度,不能改变
data []*BucketWrap // 真正bucket的数据
}
type BucketWrap struct {
BucketStart uint64 // bucket起始时间
Value atomic.Value // bucket数据结构,例如 MetricBucket
}
type MetricBucket struct {
counter [base.MetricEventTotal]int64 // 计数数组,可放不同类型
minRt int64 // 最小RT
maxConcurrency int32 // 最大并发数
}
再看下是如何写入指标的,例如当流程正常通过时
// ①
sn.AddCount(base.MetricEventPass, int64(count))
// ②
func (bla *BucketLeapArray) AddCount(event base.MetricEvent, count int64) {
bla.addCountWithTime(util.CurrentTimeMillis(), event, count)
}
// ③
func (bla *BucketLeapArray) addCountWithTime(now uint64, event base.MetricEvent, count int64) {
b := bla.currentBucketWithTime(now)
if b == nil {
return
}
b.Add(event, count)
}
// ④
func (mb *MetricBucket) Add(event base.MetricEvent, count int64) {
if event >= base.MetricEventTotal || event < 0 {
logging.Error(errors.Errorf("Unknown metric event: %v", event), "")
return
}
if event == base.MetricEventRt {
mb.AddRt(count)
return
}
mb.addCount(event, count)
}
// ⑤
func (mb *MetricBucket) addCount(event base.MetricEvent, count int64) {
atomic.AddInt64(&mb.counter[event], count)
}
取到相应的 bucket,然后写入相应 event 的 count,对 RT 会特殊处理,因为有一个最小 RT 需要处理。
重点看是如何取到相应的 bucket 的:
func (bla *BucketLeapArray) currentBucketWithTime(now uint64) *MetricBucket {
// ①根据当前时间取bucket
curBucket, err := bla.data.currentBucketOfTime(now, bla)
...
b, ok := mb.(*MetricBucket)
if !ok {
...
return nil
}
return b
}
func (la *LeapArray) currentBucketOfTime(now uint64, bg BucketGenerator) (*BucketWrap, error) {
...
// ②计算index = (now / bucketLengthInMs) % LeapArray.array.length
idx := la.calculateTimeIdx(now)
// ③计算bucket开始时间 = now - (now % bucketLengthInMs)
bucketStart := calculateStartTime(now, la.bucketLengthInMs)
for {
old := la.array.get(idx)
if old == nil { // ④未使用,直接返回
newWrap := &BucketWrap{
BucketStart: bucketStart,
Value: atomic.Value{},
}
newWrap.Value.Store(bg.NewEmptyBucket())
if la.array.compareAndSet(idx, nil, newWrap) {
return newWrap, nil
} else {
runtime.Gosched()
}
} else if bucketStart == atomic.LoadUint64(&old.BucketStart) { // ⑤刚好取到是当前bucket,返回
return old, nil
} else if bucketStart > atomic.LoadUint64(&old.BucketStart) { // ⑥取到了旧的bucket,重置使用
if la.updateLock.TryLock() {
old = bg.ResetBucketTo(old, bucketStart)
la.updateLock.Unlock()
return old, nil
} else {
runtime.Gosched()
}
} else if bucketStart < atomic.LoadUint64(&old.BucketStart) { // ⑦取到了比当前还新的bucket,总共只有一个bucket时,并发情况可能会出现这种情况,其他情况不可能,直接报错
if la.sampleCount == 1 {
return old, nil
}
return nil, errors.New(fmt.Sprintf("Provided time timeMillis=%d is already behind old.BucketStart=%d.", bucketStart, old.BucketStart))
}
}
}
举个直观的例子,看如何拿到 bucket:

- 假设 B2 取出来是 nil,则 new 一个 bucket 通过 compareAndSet 写入,保证线程安全,如果别别的线程先写入,这里会执行失败,调用 runtime.Gosched(),让出时间片,进入下一次循环
- 假设取出 B2 的开始时间是3400,与计算的相同,则直接使用
- 假设取出的 B2 的开始时间小于 3400,说明这个 bucket 太旧了,需要覆盖,使用更新锁来更新,保证线程安全,如果拿不到锁,也让出时间片,进入下一次循环
- 假设取出 B2 的开始时间大于3400,说明已经有其他线程更新了,而 bucketLengthInMs 通常远远大于锁的获取时间,所以这里只考虑只有一个 bucket 的情况直接返回,其他情况报错
回到 QPS 计算:
qps := stat.InboundNode().GetQPS(base.MetricEventPass)
该方法会先计算一个起始时间范围
func (m *SlidingWindowMetric) getBucketStartRange(timeMs uint64) (start, end uint64) {
curBucketStartTime := calculateStartTime(timeMs, m.real.BucketLengthInMs())
end = curBucketStartTime
start = end - uint64(m.intervalInMs) + uint64(m.real.BucketLengthInMs())
return
}
例如当前时间为3500,则计算出
- end = 3400
- start = 3400 - 1200 + 200 = 2400

然后遍历所有 bucket,把在这个范围内的 bucket 都拿出来,计算 QPS,只需要相加即可。
最后
本节从滑动窗口流控算法的工程实现演进到 Sentinel-Go 里滑动窗口的实现,从 Sentinel-Go 的实现上看到,还得考虑内存的使用,并发控制等等,如果完全写出来,还是非常不容易的。
《Sentinel-Go源码系列》已经写了三篇,只介绍了两个知识点:责任链模式、滑动窗口限流,后续还有对象池等,但这其实和 Sentinel-Go 关系不是很大,到时候单独成文,就不放在本系列里了。
本文算是一个结束,与其说是结束,不如说是一个开始。
搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。
Sentinel-Go 源码系列(三)滑动时间窗口算法的工程实现的更多相关文章
- Spring源码系列(三)--spring-aop的基础组件、架构和使用
简介 前面已经讲完 spring-bean( 详见Spring ),这篇博客开始攻克 Spring 的另一个重要模块--spring-aop. spring-aop 可以实现动态代理(底层是使用 JD ...
- 深入seajs源码系列三
入口方法 每个程序都有个入口方法,类似于c的main函数,seajs也不例外.系列一的demo在首页使用了seajs.use(),这便是入口方法.入口方法可以接受2个参数,第一个参数为模块名称,第二个 ...
- 框架源码系列三:手写Spring AOP(AOP分析、AOP概念学习、切面实现、织入实现)
一.AOP分析 问题1:AOP是什么? Aspect Oriented Programming 面向切面编程,在不改变类的代码的情况下,对类方法进行功能增强. 问题2:我们需要做什么? 在我们的框架中 ...
- 手牵手,从零学习Vue源码 系列一(前言-目录篇)
系列文章: 手牵手,从零学习Vue源码 系列一(前言-目录篇) 手牵手,从零学习Vue源码 系列二(变化侦测篇) 手牵手,从零学习Vue源码 系列三(虚拟DOM篇) 陆续更新中... 预计八月中旬更新 ...
- Spring源码系列(四)--spring-aop是如何设计的
简介 spring-aop 用于生成动态代理类(底层是使用 JDK 动态代理或 cglib 来生成代理类),搭配 spring-bean 一起使用,可以使 AOP 更加解耦.方便.在实际项目中,spr ...
- 使用react全家桶制作博客后台管理系统 网站PWA升级 移动端常见问题处理 循序渐进学.Net Core Web Api开发系列【4】:前端访问WebApi [Abp 源码分析]四、模块配置 [Abp 源码分析]三、依赖注入
使用react全家桶制作博客后台管理系统 前面的话 笔者在做一个完整的博客上线项目,包括前台.后台.后端接口和服务器配置.本文将详细介绍使用react全家桶制作的博客后台管理系统 概述 该项目是基 ...
- hbase源码系列(十二)Get、Scan在服务端是如何处理
hbase源码系列(十二)Get.Scan在服务端是如何处理? 继上一篇讲了Put和Delete之后,这一篇我们讲Get和Scan, 因为我发现这两个操作几乎是一样的过程,就像之前的Put和Del ...
- Java源码系列2——HashMap
HashMap 的源码很多也很复杂,本文只是摘取简单常用的部分代码进行分析.能力有限,欢迎指正. HASH 值的计算 前置知识--位运算 按位异或操作符^:1^1=0, 0^0=0, 1^0=0, 值 ...
- 【Tomcat 源码系列】源码构建 Tomcat
一,前言 这篇博客写于 12 月 12 日,从 github[1] 上 fork 了一份 tomcat 的源代码,clone 到了本地.最近想把 tomcat 的源代码分析一下,寒假的时候有完整的时间 ...
随机推荐
- mysql注入绕过information_schema过滤
1.利用mysql5.7新增的sys.schema_auto_increment_columns 这是sys数据库下的一个视图,基础数据来自与information_schema,他的作用是对表的自增 ...
- gantt甘特图可拖拽、编辑(vue、react都可用 highcharts)
前言 Excel功能强大,应用广泛.随着web应用的兴起和完善,用户的要求也越来越高.很多Excel的功能都搬到了sass里面.恨不得给他们做个Excel出来...程序员太难了... 去年我遇到了 ...
- SQL 跨实例操作
SQL 跨实例操作 我使用的是 OpenDataSource 函数,假设你要在其他机器上访问 192.168.0.1 上的数据库: SELECT A.[Name], B.[SkillName], B. ...
- NFLSOJ 1060 - 【2021 六校联合训练 NOI #40】白玉楼今天的饭(子集 ln)
由于 NFLSOJ 题面上啥也没有就把题意贴这儿了( 没事儿,反正是上赛季的题,你们非六校学生看了就看了,况且看了你们也没地方交就是了 题意: 给你一张 \(n\) 个点 \(m\) 条边的图 \(G ...
- Linux— 查看系统的位数
[root@zf-test-web01-4 ~]# file /bin/ls #"/bin/ls" is a binary file /bin/ls: ELF ...
- python基础实战
字符串的互相转换 字典的排序 字典的排序可以直接把,key值或者,values拿出来排序 也可以用dict.items拿出所有的key,value的值再加key=lambda x:x[1] 来排序. ...
- 联盛德 HLK-W806 (六): I2C驱动SSD1306 128x64 OLED液晶屏
目录 联盛德 HLK-W806 (一): Ubuntu20.04下的开发环境配置, 编译和烧录说明 联盛德 HLK-W806 (二): Win10下的开发环境配置, 编译和烧录说明 联盛德 HLK-W ...
- JavaBean内省与BeanInfo
Java的BeanInfo在工作中并不怎么用到,我也是在学习spring源码的时候,发现SpringBoot启动时候会设置一个属叫"spring.beaninfo.ignore", ...
- 逻辑学与Prolog学习笔记
int a = 3 + 5; 很自然.如果Matrix a, b要加呢?没有运算符重载,a + b是不行的,只能add(a, b). int a = add(3, 5)也行.如果函数名可以用+呢?+( ...
- Git的使用-一个分支完全替换另一个分支
之前公司git分支混乱,今天花时间整理了一下,在合并分支的时候遇到一个问题: 一个很久没有拉取远程代码的分支与master分支合并时,出现冲突之外,还会丢失文件,很头疼,然后找到了下面的方法,可以直接 ...
