TCP的三次握手

所谓三次握手 Three-Way Handshake 是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。好比两个人在打电话:

当连接被建立或被终止,交换的报文段只包含TCP头部,而没有数据。

tcp报文头部结构

  • 序号:seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。
  • 确认序号:ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,确认方ack=发起方seq+1,两端配对。
  • 标志位
    • ACK:确认序号有效。
    • FIN:释放一个连接。
    • RST:重置连接。
    • SYN:发起一个新连接。
    • PSH:接收方应该尽快将这个报文交给应用层。
    • URG:紧急指针(urgent pointer)有效。

第一次握手:客户端要向服务端发起连接请求,首先客户端随机生成一个起始序列号ISN(比如是100),那客户端向服务端发送的报文段包含SYN标志位(也就是SYN=1),序列号seq=100。

第二次握手:服务端收到客户端发过来的报文后,发现SYN=1,知道这是一个连接请求,于是将客户端的起始序列号100存起来,并且随机生成一个服务端的起始序列号(比如是300)。然后给客户端回复一段报文,回复报文包含SYN和ACK标志(也就是SYN=1,ACK=1)、序列号seq=300、确认号ack=101(客户端发过来的序列号+1)。

第三次握手:客户端收到服务端的回复后发现ACK=1并且ack=101,于是知道服务端已经收到了序列号为100的那段报文;同时发现SYN=1,知道了服务端同意了这次连接,于是就将服务端的序列号300给存下来。然后客户端再回复一段报文给服务端,报文包含ACK标志位(ACK=1)、ack=301(服务端序列号+1)、seq=101(第一次握手时发送报文是占据一个序列号的,所以这次seq就从101开始,需要注意的是不携带数据的ACK报文是不占据序列号的,所以后面第一次正式发送数据时seq还是101)。当服务端收到报文后发现ACK=1并且ack=301,就知道客户端收到序列号为300的报文了,就这样客户端和服务端通过TCP建立了连接。

四次挥手

比如客户端初始化的序列号ISA=100,服务端初始化的序列号ISA=300。TCP连接成功后客户端总共发送了1000个字节的数据,服务端在客户端发FIN报文前总共回复了2000个字节的数据。

第一次挥手:当客户端的数据都传输完成后,客户端向服务端发出连接释放报文(当然数据没发完时也可以发送连接释放报文并停止发送数据),释放连接报文包含FIN标志位(FIN=1)、序列号seq=1101(100+1+1000,其中的1是建立连接时占的一个序列号)。需要注意的是客户端发出FIN报文段后只是不能发数据了,但是还可以正常收数据;另外FIN报文段即使不携带数据也要占据一个序列号。

第二次挥手:服务端收到客户端发的FIN报文后给客户端回复确认报文,确认报文包含ACK标志位(ACK=1)、确认号ack=1102(客户端FIN报文序列号1101+1)、序列号seq=2300(300+2000)。此时服务端处于关闭等待状态,而不是立马给客户端发FIN报文,这个状态还要持续一段时间,因为服务端可能还有数据没发完。

第三次挥手:服务端将最后数据(比如50个字节)发送完毕后就向客户端发出连接释放报文,报文包含FIN和ACK标志位(FIN=1,ACK=1)、确认号和第二次挥手一样ack=1102、序列号seq=2350(2300+50)。

第四次挥手:客户端收到服务端发的FIN报文后,向服务端发出确认报文,确认报文包含ACK标志位(ACK=1)、确认号ack=2351、序列号seq=1102。注意客户端发出确认报文后不是立马释放TCP连接,而是要经过2MSL(最长报文段寿命的2倍时长)后才释放TCP连接。而服务端一旦收到客户端发出的确认报文就会立马释放TCP连接,所以服务端结束TCP连接的时间要比客户端早一些。

golang:三次握手四次挥手总结的更多相关文章

  1. TCP/IP三次握手四次挥手

    本文通过图来梳理TCP-IP协议相关知识.TCP通信过程包括三个步骤:建立TCP连接通道,传输数据,断开TCP连接通道.如图所示,给出了TCP通信过程的示意图. TCP 三次握手四次挥手 主要包括三部 ...

  2. TCP协议—三次握手四次挥手的原理<转>

    三次握手四次挥手的原理   TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接.在TCP/IP协议中,TCP 协议提供可靠的连接服务,连接是通过三次握手进行初始化的.三 ...

  3. python摸爬滚打之----tcp协议的三次握手四次挥手

    TCP协议的三次握手, 四次挥手 三次握手过程 1, 服务器时刻准备接受客户端进程的连接请求, 此时服务器就进入了LISTEN(监听)状态; 2, 客户端进程然后向服务器发出连接请求报文, 之后客户端 ...

  4. 在深谈TCP/IP三步握手&四步挥手原理及衍生问题—长文解剖IP

    如果对网络工程基础不牢,建议通读<细说OSI七层协议模型及OSI参考模型中的数据封装过程?> 下面就是TCP/IP(Transmission Control Protoco/Interne ...

  5. [na]TCP的三次握手四次挥手/SYN泛洪

    1.TCP报文格式 上图中有几个字段需要重点介绍下: (1)序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记. (2)确认序号:Ack序号,占32位, ...

  6. [转]Linux服务器上11种网络连接状态 和 TCP三次握手/四次挥手详解

    一.Linux服务器上11种网络连接状态: 图:TCP的状态机 通常情况下:一个正常的TCP连接,都会有三个阶段:1.TCP三次握手;2.数据传送;3.TCP四次挥手. 注:以下说明最好能结合”图:T ...

  7. tcp三次握手四次挥手那些事

    建立TCP需要三次握手才能建立,而断开连接则需要四次挥手.三次握手,四次挥手流程图如下: 一.首先看下如何通过三次挥手----------建立连接 首先客户端发送连接请求报文,服务端接受连接后回复AC ...

  8. 网络模型+三次握手+四次挥手+DNS+HTTPS

    网络模型+三次握手+四次挥手+DNS+HTTPS 这篇文章十分精华,所以整理一下: 一.网络模型 OSI七层模型,和TCP/IP五层模型(更为普遍) TCP/IP 协议集: 二.TCP协议(传输层)建 ...

  9. Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手)

    Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手) 一丶CS/BS 架构 C/S: 客户端/服务器    定义:       ...

  10. 网络 TCP三次握手,四次挥手详解

    三次握手,四次挥手可以说是炙手可热的面试题了,来看看它究竟长什么样子吧! 我们先把流程图贴上来 : 为什么这么复杂? 因为TCP是可靠性传输. 确认可靠传输的前提:  TCP连接管理机制 用TCP首部 ...

随机推荐

  1. 力扣 - 剑指 Offer 37. 序列化二叉树

    目录 题目 思路 代码 复杂度分析 题目 剑指 Offer 37. 序列化二叉树 思路 序列化其实就是层序遍历 但是,要能反序列化的话,前.中.后.层序遍历是不够的,必须在序列化时候保存所有信息,这样 ...

  2. 为了效率,我们可以用的招数 之 strlen

    如果要你写一个计算字符串长度的函数 strlen,应该怎么写?相信你很容易写出如下实现: 1 int strlen_1(const char* str) { 2 int cnt = 0; 3 4 if ...

  3. 第25 章 : Kubernetes 网络模型进阶

    Kubernetes 网络模型进阶 本文将主要分享以下五个方面的内容: Kubernetes 网络模型来龙去脉 Pod 究竟如何上网? Service 究竟怎么工作? 啥?负载均衡还分内部外部? 思考 ...

  4. 结对作业-stage_2

    见队友博客:结对编程-stage_2

  5. Java String系列

    String详解, String和CharSequence区别, StringBuilder和StringBuffer的区别 (String系列之1) StringBuilder 详解 (String ...

  6. 消息队列高手课,带你从源码角度全面解析MQ的设计与实现

    消息队列中间件的使用并不复杂,但如果你对消息队列不熟悉,很难构建出健壮.稳定并且高性能的企业级系统,你会面临很多实际问题: 如何选择最适合系统的消息队列产品? 如何保证消息不重复.不丢失? 如果你掌握 ...

  7. python基础(补充):python三大器之生成器

    生成器的定义 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后 ...

  8. 《MySQL必知必会》学习笔记整理

    简介 此笔记只包含<MySQL必知必会>中部分章节的整理笔记.这部分章节主要是一些在<SQL必知必会>中并未讲解的独属于 MySQL 数据库的一些特性,如正则表达式.全文本搜索 ...

  9. 软件调研——GoodNotes 5与Notability

    项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 作业要求 我在这个课程的目标是 积累软件开发经验,提高工程能力 这个作业在哪个具体方面帮助我实现目标 深入调 ...

  10. ListBox控件的另一种数据绑定方式

    把DataTemplate防止ListBox中的绑定 <ListBox x:Name="ListBoxName"> <ListBox.ItemTemplate&g ...