题解 洛谷 P4602 【[CTSC2018]混合果汁】
注意到问题具有单调性,所以一个询问可以通过二分答案来解决。
对于多组询问,就采用整体二分来处理。
将果汁按\(d\)从大到小排序,二分出一个位置\(mid\),只考虑在位置\(mid\)之前的果汁,其中位置\(mid\)的果汁的\(d\)即为二分出的所有参与混合的果汁的美味度的最小值。
在判断一个\(mid\)合不合法时,将其之前所有果汁的体积的前缀和和各自的体积乘价格前缀和处理出来,后者就是买下所有果汁的价格。
然后对于一个询问,再进行一次二分,找到最小的价格来满足其体积的需求,然后就可以判断一个\(mid\)是否合法了。
对于前缀和的操作,可以通过树状数组来实现,随着\(mid\)的改变调整即可。
具体实现细节看代码吧。
\(code\)
#include<bits/stdc++.h>
#define maxn 200010
#define inf 1000000000000000000
#define lowbit(x) (x&(-x))
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,m,now,ma;
ll ans[maxn];
struct node
{
ll d,p,l;
}t[maxn];
bool cmp(const node &a,const node &b)
{
return a.d>b.d;
}
struct query
{
ll g,l;
int id;
}q[maxn],q1[maxn],q2[maxn];
struct Tree
{
ll tr[maxn];
void update(int x,ll v)
{
while(x<=ma)
tr[x]+=v,x+=lowbit(x);
}
ll query(int x)
{
ll sum=0;
while(x)
sum+=tr[x],x-=lowbit(x);
return sum;
}
}Li,Pr;
void change(int x,int type)
{
Li.update(t[x].p,type*t[x].l),Pr.update(t[x].p,type*t[x].p*t[x].l);
}
ll find(int x)
{
int l=1,r=ma,pr=ma;
while(l<=r)
{
int mid=(l+r)>>1;
if(Li.query(mid)>=q[x].l) pr=mid,r=mid-1;
else l=mid+1;
}
return pr;
}
void solve(int L,int R,int l,int r)
{
if(L>R) return;
if(l==r)
{
for(int i=L;i<=R;++i) ans[q[i].id]=t[l].d;
return;
}
int mid=(l+r)>>1;
while(now<mid) change(++now,1);
while(now>mid) change(now--,-1);
int cnt1=0,cnt2=0;
for(int i=L;i<=R;++i)
{
ll pr=find(i),lv=Li.query(pr),pv=Pr.query(pr);
if(lv>=q[i].l&&pv-pr*(lv-q[i].l)<=q[i].g) q1[++cnt1]=q[i];
else q2[++cnt2]=q[i];
}
for(int i=1;i<=cnt1;++i) q[L+i-1]=q1[i];
for(int i=1;i<=cnt2;++i) q[L+cnt1+i-1]=q2[i];
solve(L,L+cnt1-1,l,mid),solve(L+cnt1,R,mid+1,r);
}
int main()
{
read(n),read(m);
for(int i=1;i<=n;++i)
read(t[i].d),read(t[i].p),read(t[i].l),ma=max(ma,t[i].p);
t[++n].d=-1,t[n].p=1,t[n].l=inf,sort(t+1,t+n+1,cmp);
for(int i=1;i<=m;++i) read(q[i].g),read(q[i].l),q[i].id=i;
solve(1,m,1,n);
for(int i=1;i<=m;++i) printf("%lld\n",ans[i]);
return 0;
}
题解 洛谷 P4602 【[CTSC2018]混合果汁】的更多相关文章
- LOJ 2555 & 洛谷 P4602 [CTSC2018]混合果汁(二分+主席树)
LOJ 题目链接 & 洛谷题目链接 题意:商店里有 \(n\) 杯果汁,第 \(i\) 杯果汁有美味度 \(d_i\),单价为 \(p_i\) 元/升.最多可以添加 \(l_i\) 升.有 \ ...
- 洛谷P4602 [CTSC2018]混合果汁(主席树)
题目描述 小 R 热衷于做黑暗料理,尤其是混合果汁. 商店里有 nn 种果汁,编号为 0,1,\cdots,n-10,1,⋯,n−1 . ii 号果汁的美味度是 d_idi ,每升价格为 p_ipi ...
- [洛谷P4602] CTSC2018 混合果汁
问题描述 小 R 热衷于做黑暗料理,尤其是混合果汁. 商店里有 n 种果汁,编号为 0, 1, 2, . . . , n − 1.i 号果汁的美味度是 di,每升价格为 pi.小 R 在制作混合果汁时 ...
- Solution -「CTSC 2018」「洛谷 P4602」混合果汁
\(\mathcal{Description}\) Link. \(n\) 种果汁,第 \(i\) 种美味度为 \(d_i\),每升价格 \(p_i\),一共 \(l_i\) 升.\(m\) ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
随机推荐
- Markdown语法说明及测试一览表
标题: Markdown语法说明及测试一览表 作者: 梦幻之心星 347369787@QQ.com 标签: [Markdown, Typora, Markdown_Nice, CSS] 目录: [Ma ...
- 硬件对同步的支持-TAS和CAS指令
目录 Test and Set Compare and Swap 使用CAS实现线程安全的数据结构. 现在主流的多处理器架构都在硬件水平上提供了对并发同步的支持. 今天我们讨论两个很重要的硬件同步指令 ...
- Laravel 如何在blade文件中使用Vue组件
Laravel 如何在blade文件中使用Vue组件 1. 安装laravel/ui依赖包 composer require laravel/ui 2.生成vue基本脚手架 php artisan u ...
- git push和pull如何解决冲突!!!精品
多人合作完成项目时,git push 和 pull经常会发生冲突,根本原因就是远程的东西和本地的东西长的不一样,以下步骤能完美解决所有冲突!(先查看一下分支(git branch),确认没错再进行下面 ...
- python之浅谈数据类型
什么是数据类型 数据类型指的就是变量值的不同类型,姓名可能是一种数据类型.年龄可能是一种数据类型.爱好可能又是另一种数据类型,至于是什么数据类型我们将在下一章详细说明. 如何对数据分类 变量的是用 ...
- PKIX
这是证书认证不通过的问题,对https协议免认证 http://blog.csdn.net/zziamalei/article/details/46520797 使用上面的方法时,使用spring的& ...
- 浅谈bfs
广搜(bfs) 定义 广度优先算法,简称BFS.是一种图形搜索演算法,简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点,如果发现目标,终止. 与dfs的相似之处与不同 结合深搜理解 相同点:都 ...
- 前端走进机器学习生态,在 Node.js 中使用 Python
这次给大家带来一个好东西,它的主要用途就是能让大家在 Node.js 中使用 Python 的接口和函数.可能你看到这里会好奇,会疑惑,会不解,我 Node.js 大法那么好,干嘛要用 Python ...
- 痞子衡嵌入式:轻松为i.MXRT设计更新Segger J-Link Flash下载算法文件
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是为i.MXRT设计更新Segger J-Link Flash下载算法文件. 想要在Flash中调试,基本是离不开Flash下载算法的,毕 ...
- 转载------一小时包教会 —— webpack 入门指南
本文写的蛮好,转载地址:http://www.w2bc.com/Article/50764 其他的地址: http://webpack.github.io/docs/usage-with-gulp.h ...