Quantifier Question

有长度为 \(n\) 的序列 \(x\{n\}\),有 \(m\) 个条件 \((j_i,k_i)\)。有 \(n\) 个待定的条件符 \(Q_i\in\{\forall,\exists\}\),使

\[Q_1x_1,Q_2x_2,...,Q_nx_n,(x_{j_1}<x_{k_1})∧(x_{j_2}<x_{k_2})∧\cdots∧(x_{j_m}<x_{k_m})
\]

求 \(\forall\) 最多的方案。如果没有满足方案,输出 \(-1\)。否则输出 \(\forall\) 的数量及整个条件符串。

数据范围:\(2\le n\le 2\cdot 10^5\),\(1\le m\le 2\cdot 10^5\),\(1\le j_i,k_i\le n,j_i\not=k_i\)。


一句话题解:拓扑排序,有环输出 \(-1\),否则将每个不被前后节点影响的节点置为 \(\forall\)。


首先理解一下,不同序号的 \(Q_i\) 是有顺序的,不是平等的。如 \(x_1<x_2\),\(x_1<x_3\),令 \(Q_1=\exists,Q_2=\forall,Q_3=\forall\) 是不可以的(如选定 \(x_1\) 后取 \(x_2=x_1-1\) 就爆了);但是如果 \(x_3<x_1,x_3<x_2\),令 \(Q_1=\exists,Q_2=\forall,Q_3=\forall\) 是可以的

先用差分约束的思想,把条件转化为边,即连 \(j_i\to k_i\)。然后拓扑排序。如果拓扑排序序列长度 \(<n\),说明有环,无解,输出 \(-1\)。否则存下这个拓扑序列。

设 \(u<v\),因为先发挥 \(u\) 的条件符再发挥 \(v\) 的条件符。所以如果 \(u\) 可以走到 \(v\) 或者 \(v\) 可以走到 \(u\),那么 \(v\) 点就不能选 \(\forall\) 了;反之,如果对于 \(v\),不存在 \(u<v\) 可以走到它或被它走到,这样的节点条件符选 \(\forall\) 是最优且没有后效性的。

然后用类似 \(\texttt{dp}\) 的方法,求出每个节点的最小前驱(可以走到它)和最小后继(它可以走到),然后如果最小前驱和最小后继都不小于该节点编号,那么该节点的条件符选 \(\forall\)。


时间复杂度 \(\Theta(n+m)\)。


代码:

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x(a) a.first
#define y(a) a.second
#define b(a) a.begin()
#define e(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f; //Data
const int N=2e5;
int n,m,d[N+7],f[N+7],b[N+7],sm,ans[N+7];
vector<int> e[N+7],g[N+7]; //Bfs
int Bfs(vector<int>&q){ //就是拓扑排序
//将图的拓扑序存入q,如果形成了环就返回0。
q.clear();
for(int i=1;i<=n;i++)if(!d[i]) q.pb(i);
for(int i=0;i<sz(q);i++)
for(int to:e[q[i]])if(!--d[to]) q.pb(to);
return sz(q)==n;
} //Main
int main(){
scanf("%d%d",&n,&m);
for(int i=1,u,v;i<=m;i++) scanf("%d%d",&u,&v),e[u].pb(v),g[v].pb(u);
for(int i=1;i<=n;i++) d[i]=sz(g[i]); //d为入度
vector<int> tp;
if(!Bfs(tp)) return puts("-1"),0;
iota(f+1,f+n+1,1),iota(b+1,b+n+1,1); //将fi:=i,bi:=i。
for(int i=0;i<=sz(tp)-1;i++)
for(int to:g[tp[i]]) f[tp[i]]=min(f[tp[i]],f[to]); //最小前驱
for(int i=sz(tp)-1;i>=0;i--)
for(int to:e[tp[i]]) b[tp[i]]=min(b[tp[i]],b[to]); //最小后继
for(int i=1;i<=n;i++)if(min(f[i],b[i])==i) sm++,ans[i]=1; //讲解中说了
printf("%d\n",sm);
for(int i=1;i<=n;i++) putchar("EA"[ans[i]]);puts("");
return 0;
}

祝大家学习愉快!

题解-Quantifier Question的更多相关文章

  1. CF R639 div 2 E Quantifier Question 数学 dfs 图论

    LINK:Quantifier Question 题面过长 引起不适 读题花了好长时间 对于 和 存在符合不是很熟练 导致很懵逼的做完了. 好在还算很好想.不过wa到了一个坑点上面 自闭一大晌 还以为 ...

  2. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  3. noip2007提高组题解

    题外话:这一年的noip应该是最受大众关心的,以至于在百度上输入noip第三个关键字就是noip2007.主要是由于这篇文章:http://www.zhihu.com/question/2110727 ...

  4. 多校6 1001 HDU5793 A Boring Question (推公式 等比数列求和)

    题解:http://bestcoder.hdu.edu.cn/blog/ 多校6 HDU5793 A Boring Question // #pragma comment(linker, " ...

  5. 2016多校第六场题解(hdu5793&hdu5794&hdu5795&hdu5800&hdu5802)

    这场就做出一道题,怎么会有窝这么辣鸡的人呢? 1001 A Boring Question(hdu 5793) 很复杂的公式,打表找的规律,最后是m^0+m^1+...+m^n,题解直接是(m^(n+ ...

  6. hdu_5793_A Boring Question(打表找规律)

    题目链接:hdu_5793_A Boring Question 题意: 自己看吧,说不清楚了. 题解: 打表找规律 #include<cstdio> typedef long long l ...

  7. LeetCode题解33.Search in Rotated Sorted Array

    33. Search in Rotated Sorted Array Suppose an array sorted in ascending order is rotated at some piv ...

  8. leetcode & lintcode 题解

    刷题备忘录,for bug-free 招行面试题--求无序数组最长连续序列的长度,这里连续指的是值连续--间隔为1,并不是数值的位置连续 问题: 给出一个未排序的整数数组,找出最长的连续元素序列的长度 ...

  9. HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

随机推荐

  1. create-react-app添加对TypeScript支持

    背景 最近一直在重构react项目,由于项目历史原因,将之前parcel打包工具换成了webpack,并选择了使用create-react-app作为项目开发脚手架. 接着就是把项目中flow类型检查 ...

  2. 查询OSD运行在哪些cpu上

    前言 在看CPU相关的文章的时候,想起来之前有文章讨论是否要做CPU绑定,这个有说绑定的也有说不绑定的,然后就想到一个问题,有去观测这些OSD到底运行在哪些CPU上面么,有问题就好解决了,现在就是要查 ...

  3. dm-crypt加密磁盘

    dm-cry加密方式密码与文件 与其它创建加密文件系统的方法相比,dm-crypt系统有着无可比拟的优越性:它的速度更快,易用性更强.除此之外,它的适用面也很广,能够运行在各种块设备上,即使这些设备使 ...

  4. 在Linux中输入命令时打错并按了enter

    今天在Linux中输入命令时,打错一个单词了,之后出现一串串的~,按ESC也没用, 并在底部出现:quit<enter> to exit vim 解决办法: 按几下 esc 确保 vim ...

  5. sqlilab less28 less28a

    less-28  less-28a 二者相差不大 单引号小括号包裹,黑名单过滤--,#,空格,union空格select(不区分大小写) less-28的黑名单 less-28a的黑名单 %a0,不被 ...

  6. Java基础教程——字节流

    IO流 水流 特点 连续性 逝者如斯夫,不舍昼夜: 方向性 一江春水向东流.水往低处流.百川东到海,何时复西归?少壮不努力,老大徒伤悲! 源头尽头 唯有源头活水来:覆水难收 Java里的IO也有这样的 ...

  7. Java基础教程——Object类

    Object类 Object类是Java所有类类型的父类(或者说祖先类更合适) <Thinking in Java(Java编程思想)>的第一章名字就叫"everything i ...

  8. 【python】Matplotlib作图常用marker类型、线型和颜色

    python作图中常常会考虑用什么颜色.marker.线型,这个资料查了又查,所以自己总结在这个地方,以便常用. 一.常用marker表示 1.普通marker 这类普通marker直接marker ...

  9. 变更mysql的数据类型兼容小数测试

    来吧 我也没想到有一天要做这个测试: 想分为这几步吧: 1.先看看mysql本身支不支持数据的变更 2.再看看mybatis能不能用int接受double和decimal 先看下mysql: alte ...

  10. Kafka源码环境搭建

    github地址:https://github.com/apache/kafka clone下来之后可以看到这样的项目结构: 文件目录说明. 目录 描述 bin Windows 和 Linux 下 K ...