题解-CF1444C Team-Building
题面
给 \(n\) 个点 \(m\) 条边,每个点有颜色 \(c_i(1\le c_i\le k)\),求有多少个颜色对两组点并后是二分图。
数据范围:\(1\le n,m,k\le 5\cdot 10^5\)。
蒟蒻语
听人说是可撤销并查集后弃疗了,打出正解了没打完,其实普通并查集(权值并查集套权值并查集)就够了。
因为前面好多法师塔,只下了 \(7\) 分。
题解
看到判断二分图想到黑白染色。但是不想 dfs
,怎么办?
有两种办法:拆点并查集和路径带权值并查集。蒟蒻选了后者。
对于一个颜色,内部不是二分图那么加入了另一组也不是二分图了。
所以可以先用路径带权值并查集在每个颜色内部把黑白关系连好,内部不是二分图的以后也不用管了。
然后处理两个颜色之间的。虽然看似 \(\Theta(n^2)\),但是如果两个颜色间没边必然是二分图,否则只有 \(\Theta(m)\) 个。
处理两个颜色间的,可以把两个颜色内部的每个连通块看作一个点,再套一层权值并查集然后连黑白关系。
外面那层并查集每次只需要初始化要用的就可以了,所以不需要可撤销。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define bg begin()
#define ed end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),i##E=(b);i<i##E;i++)
#define L(i,a,b) for(int i=(b)-1,i##E=(a)-1;i>i##E;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f;
//Data
const int N=5e5;
int n,m,k,c[N],good;
bool bad[N];
//Graph
map<pair<int,int>,int> mp;
int mc; pair<int,int> me[N];
vector<pair<int,int>> e[N];
//Dsu
struct dsu{
int te[N],dep[N];
int find(int u){
if(te[u]==u) return u;
int an=find(te[u]);
dep[u]^=dep[te[u]];
return te[u]=an;
}
}d[2];
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m>>k,good=k;
R(i,0,n) cin>>c[i],--c[i];
R(i,0,m){
int u,v; cin>>u>>v,--u,--v;
if(c[u]>c[v]) swap(u,v);
pair<int,int> t=mp(c[u],c[v]);
if(!mp.count(t)) mp[t]=mc,me[mc]=t,mc++;
e[mp[t]].pb(mp(u,v));
}
iota(d[0].te,d[0].te+n,0);
R(i,0,k)if(mp.count(mp(i,i))){
for(pair<int,int> t:e[mp[mp(i,i)]]){
int x=d[0].find(t.x),y=d[0].find(t.y);
if(x==y&&(d[0].dep[t.x]^d[0].dep[t.y]^1)!=0){bad[i]=true,good--;break;}
d[0].dep[x]=d[0].dep[t.x]^d[0].dep[t.y]^1,d[0].te[x]=y;
}
}
// cout<<"good="<<good<<'\n';
ll ans=1ll*good*(good-1)/2;
R(i,0,mc)if(me[i].x!=me[i].y){
if(bad[me[i].x]||bad[me[i].y]) continue;
for(pair<int,int> t:e[i]){
int xi=d[0].find(t.x),yi=d[0].find(t.y);
d[1].dep[xi]=0,d[1].te[xi]=xi,d[1].dep[yi]=0,d[1].te[yi]=yi;
}
for(pair<int,int> t:e[i]){
int xi=d[0].find(t.x),yi=d[0].find(t.y);
int x=d[1].find(xi),y=d[1].find(yi);
if(x==y&&(d[1].dep[xi]^d[0].dep[t.x]
^d[1].dep[yi]^d[0].dep[t.y]^1)!=0){ans--;break;}
d[1].dep[x]=d[1].dep[xi]^d[0].dep[t.x]
^d[1].dep[yi]^d[0].dep[t.y]^1,d[1].te[x]=y;
}
}
cout<<ans<<'\n';
return 0;
}
祝大家学习愉快!
题解-CF1444C Team-Building的更多相关文章
- BZOJ 4742: [Usaco2016 Dec]Team Building
4742: [Usaco2016 Dec]Team Building Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 21 Solved: 16[Su ...
- CF1316E Team Building
CF1316E [Team Building] 状压dp,感觉比D简单 \(f[i][s]\),表示考虑前\(i\)个人,状态为\(s\)(\(s\)的第\(j-1\)个二进制位表示队员的第\(j\) ...
- Spoj-BIPCSMR16 Team Building
To make competitive programmers of BUBT, authority decide to take regular programming contest. To ma ...
- [题解] CF932E Team Work
CF932E Team Work 你现在手里有\(n\)个人,你要选出若干个人来搞事情(不能不选),其中选择\(x\)个人出来的代价是\(x^k\),问所有方案的代价总和. 数据范围:\(1\le n ...
- BZOJ4742 : [Usaco2016 Dec]Team Building
如果我们将两个人拥有的牛混在一起,并按照战斗力从小到大排序,同时把第一个人选的牛看成$)$,第二个人选的牛看成$($的话,那么我们会发现一个合法的方案对应了一个长度为$2k$的括号序列. 于是DP即可 ...
- 1742. Team building(dfs)
1742 最小的是找联通块数 最大的找环 一个环算一个 其它的数各算一个 #include <iostream> #include<cstdio> #include<cs ...
- [USACO 2016Dec] Team Building
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4742 [算法] 动态规划 用Fi,j,k表示约翰的前i头牛和保罗的前j头牛匹配 , ...
- BZOJ练习记
决定从头到尾干一波BZOJ!可能会写没几题就停下吧,但还是想学学新姿势啦. 1001. [BeiJing2006]狼抓兔子 即求 $(1, 1)$ 到 $(n, m)$ 的最小割.跑 dinic 即可 ...
- Codeforces 杂题集 2.0
记录一些没有写在其他随笔中的 Codeforces 杂题, 以 Problemset 题号排序 1326D2 - Prefix-Suffix Palindrome (Hard version) ...
随机推荐
- Netlink 内核实现分析 4
netlink 库函数: http://www.infradead.org/~tgr/libnl/doc/core.html#core_netlink_fundamentals #define NET ...
- Java基础 之一 基本知识
Java基础 之一 基本知识 1.数据类型 Java有8种基本数据类型 int.short .long.byte.float.double.char.boolean 先说明以下单位之间的关系 1位 = ...
- BeanFactory and FactoryBean
BeanFactory,这是Spring容器的基础实现类,它负责生产和管理Bean的一个工厂.当然BeanFactory只是一个接口,它的常用实现有XmlBeanFactory.DefaultList ...
- Elementary OS常见软件(TIM、微信、企业微信)安装(二)
前言 最终没忍住还是把开发环境迁移到了Elementary OS上来,这其中也没少折腾,试过Ubuntu 20.04 LTS和deepin V20可以(),deepin真的很不错可能是我的电脑兼容性不 ...
- xss攻击与防范
xss攻击方式以及防范 通常来说,网站一般都是有着,用户注册,用户登录,实名认证等等这些需要用户把信息录入数据库的接口 xss找的就是这种接口,他们可以在传递数据的时候,传递恶意的 script ...
- DDBNet:Anchor-free新训练方法,边粒度IoU计算以及更准确的正负样本 | ECCV 2020
论文针对当前anchor-free目标检测算法的问题提出了DDBNet,该算法对预测框进行更准确地评估,包括正负样本以及IoU的判断.DDBNet的创新点主要在于box分解和重组模块(D&R) ...
- 深入浅出!springboot从入门到精通,实战开发全套教程!
前言 之前一直有粉丝想让我出一套springboot实战开发的教程,我这边总结了很久资料和经验,在最近总算把这套教程的大纲和内容初步总结完毕了,这份教程从springboot的入门到精通全部涵盖在内, ...
- [从源码学设计]蚂蚁金服SOFARegistry之网络封装和操作
[从源码学设计]蚂蚁金服SOFARegistry之网络封装和操作 目录 [从源码学设计]蚂蚁金服SOFARegistry之网络封装和操作 0x00 摘要 0x01 业务领域 1.1 SOFARegis ...
- FL Studio钢琴卷轴之画笔工具
在FL Studio中,钢琴卷轴窗口是制作音乐很重要的一个窗口,大部分音乐编辑的工作都要在该窗口中完成.钢琴卷轴的概念来源于旧时自动机械钢琴所使用的纸质卷轴,在钢琴卷轴中,纵轴代表音符的高度,横轴代表 ...
- Java中对象在内存中的大小、分配等问题
Java创建一个对象的过程 是否对象指向的类已经加载到内存了 如果没有加载,就要经过load.linking(verification.preparation.resolution).initiali ...