bzoj4459[Jsoi2013]丢番图

题意:

丢番图方程:1/x+1/y=1/n(x,y,n∈N+) ,给定n,求出关于n的丢番图方程有多少组解。n≤10^14。

题解:

通分得yn+xn=xy,即xy-xn-yn+n^2=n^2,即(x-n)(y-n)=n^2,故x-n是n^2的因数,所有答案为n^2的因数个数/2,向上取整。一个数的因数个数为该数每种质因数的个数+1的乘积。所以先将n分解质因数,然后ans乘上个数*2+1(因为要求n^2的因数个数)。如果最后n>1,说明有一个质因数大于sqrt(n),则ans还要乘3。最后输出(ans+1)/2即可。

代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std; long long n,ans;
int main(){
scanf("%lld",&n); ans=;
for(int i=;(ll)i*i<=n;i++)if(n%i==){
int j=; while(n%i==)n/=i,j++; ans*=(j<<|); if(n==)break;
}
if(n>)ans*=;
printf("%lld",(ans+)>>); return ;
}

20160817

bzoj4459[Jsoi2013]丢番图的更多相关文章

  1. bzoj 4459: [Jsoi2013]丢番图 -- 数学

    4459: [Jsoi2013]丢番图 Time Limit: 10 Sec  Memory Limit: 64 MB Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系 ...

  2. BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数

    BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数 Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一. 为了纪念他,这些方程一般被称 ...

  3. 【bzoj4459】[Jsoi2013]丢番图 分解质因数

    题目描述 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一.为了纪念他,这些方程一般被称作丢番图方程.最著名的丢番图方程之一是x^N+y^n=z^N.费马提出,对于N&g ...

  4. 【bzoj4459】JSOI2013丢番图

    某JSOI夏令营出题人啊,naive! 你还是得学习个,搬这种原题不得被我一眼看穿? 求个n^2的约数除以二,向上取整. #include<bits/stdc++.h> using nam ...

  5. BZOJ 4459: [Jsoi2013]丢番图 数学推导

    之前绝对做过几乎一模一样的题,现在做竟然忘了. code: #include <bits/stdc++.h> #define ll long long #define setIO(s) f ...

  6. Project Euler 110:Diophantine reciprocals II 丢番图倒数II

    Diophantine reciprocals II In the following equation x, y, and n are positive integers. For n = 4 th ...

  7. Project Euler 108:Diophantine reciprocals I 丢番图倒数I

    Diophantine reciprocals I In the following equation x, y, and n are positive integers. For n = 4 the ...

  8. [luogu5253]丢番图【数学】

    传送门 [传送门] 题目大意 求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n}\)有多少组不同的解. 分析 将式子转化成\((n-x)(n-y)=n^2\)的形式. 那么很 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. C++中为什么按两次ctrl+D才能结束标准I/O

    参考资料: https://www.douban.com/group/topic/127062773/ 今天学习了C++语言的标准I/O,也就是std::cin和std::cout,但是我发现当系统在 ...

  2. drf之框架基础

    (一)drf基础 全称:django-rest framework 接口:什么是接口.restful接口规范(协议) CBV(基于FBV的基础上形成).CBV生命周期源码----基于restful规范 ...

  3. C#数据结构与算法系列(八):栈(Stack)

    1.介绍 栈是一个先入后出(FILO-First In Last Out)的有序列表 栈是限制线性表中元素的插入和删除只能在线性表的同一端进行的特殊线性表.允许插入和删除的一端,为变化的一端,称为栈顶 ...

  4. ubuntu 显示桌面快捷键

    ubuntu 显示桌面快捷键 快速显示桌面的快捷键是 ctrl + win + d win:就是窗口键,在键盘左侧ctrl与Alt之间的那个建.

  5. 利用salt进行系统初始化操作

    使用salt对系统进行初始化操作 概述 使用cobbler安装的操作系统,默认安装了一些基本的软件,比如zabbix-agent.salt-minion等,还没有对系统进行基本的初始化操作,为了实现标 ...

  6. 手把手教你使用Python抓取QQ音乐数据(第一弹)

    [一.项目目标] 获取 QQ 音乐指定歌手单曲排行指定页数的歌曲的歌名.专辑名.播放链接. 由浅入深,层层递进,非常适合刚入门的同学练手. [二.需要的库] 主要涉及的库有:requests.json ...

  7. docer

    docker默认是不保存文件的,包保存文件需要进行映射 dockerfile编写如下 直接下面的命令会失败 因为run后面的命令/bin/bash会失败,执行的是dockffile中定义的httpd ...

  8. JavaWeb网上图书商城完整项目--发送邮件

    1.首先注册一个163邮箱 自己的邮箱地址是18780279472@163.com 登陆的密码是key@wy111***19 使用邮箱发邮件,邮件必须开启pop和smtp服务,登陆邮件 开启pop服务 ...

  9. Python 简明教程 --- 18,Python 面向对象

    微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 代码能借用就借用. -- Tom Duff 目录 编程可分为面向过程编程和面向对象编程,它们是两种不 ...

  10. 3dTiles 数据规范详解[2] Tileset与Tile

    转载请声明出处:全网@秋意正寒 https://www.cnblogs.com/onsummer/p/13128682.html 一.一个简单的3dTiles数据示例 上图是一份 3dTiles数据集 ...