题意:

有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点。

思路:

按题意研究一下就会发现题目所求为。

\[(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n[gcd(i,j,k)==1])+(\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==1])\\+(\sum_{i=1}^n\sum_{k=1}^n[gcd(i,k)==1])+(\sum_{j=1}^n\sum_{k=1}^n[gcd(j,k)==1])
\]

随便求其中一个,由莫比乌斯函数已知\(\sum_{d|n}\mu(d)=[n=1]\),替换可得

\[\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\sum_{d|n}\mu(d)=\sum_{d=1}^n\mu(d)*\lfloor{\frac{n}{d}}\rfloor^3
\]

其他情况同理。

参考:

莫比乌斯反演-让我们从基础开始

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1000000 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std; int mu[maxn], vis[maxn];
int prime[maxn], cnt;
void getmu(int n){
memset(vis, 0, sizeof(vis));
memset(mu, 0, sizeof(mu));
cnt = 0;
mu[1] = 1;
for(int i = 2; i <= n; i++) {
if(!vis[i]){
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && prime[j] * i <= n; j++){
vis[prime[j] * i] = 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
}
ll get(int n){
return 1LL * n * n * n + 3LL * n * n + 3LL * n;
}
int main(){
int n, T;
getmu(1000000);
scanf("%d", &T);
while(T--){
scanf("%d", &n);
ll ans = 0;
for(int i = 1; i <= n; i++){
ans += 1LL * mu[i] * get(n / i);
}
printf("%lld\n", ans);
}
return 0;
}

SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解的更多相关文章

  1. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  2. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  3. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  4. spoj 7001 Visible Lattice Points莫比乌斯反演

    Visible Lattice Points Time Limit:7000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  5. SPOJ 7001 Visible Lattice Points (莫比乌斯反演)

    题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...

  6. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  7. Spoj 7001 Visible Lattice Points 莫比乌斯,分块

    题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193   Visible Lattice Points Time L ...

  8. spoj7001 Visible Lattice Points 莫比乌斯反演+三维空间互质对数

    /** 题目:Visible Lattice Points 链接:https://vjudge.net/contest/178455#problem/A 题意:一个n*n*n大小的三维空间.一侧为(0 ...

  9. SPOJ VLATTICE - Visible Lattice Points 【“小”大数加减】

    题目链接 一道比较简单的莫比乌斯反演,不过ans会爆long long,我是用结构体来存结果的,结构体中两个LL型变量分别存大于1e17和小于1e17的部分 #include<bits/stdc ...

随机推荐

  1. [CPP] STL 简介

    STL 即标准模板库(Standard Template Library),是 C++ 标准库的一部分,里面包含了一些模板化的通用的数据结构和算法.STL 基于模版的实现,因此能够支持自定义的数据结构 ...

  2. Spring Security 实战干货:AuthenticationManager的初始化细节

    1. 前言 今天有个同学告诉我,在Security Learning项目的day11分支中出现了一个问题,验证码登录和其它登录不兼容了,出现了No Provider异常.还有这事?我赶紧跑了一遍还真是 ...

  3. django ajax应用

    ajax: 什么是ajax,有什么作用: 以前我们在页面向后台提交数据的时候都是使用from表单,这样的提交会在提交的时候将整个页面全部刷新,如果你在填写表单的时候提交之后发现某个数据不对,但是你已提 ...

  4. jmeter-命令行执行及测试报告导出

    问题1:GUI方式能够进行测试报告导出? 回答:目前找了很多资料,没有找到采用GUI方式测试完成,然后命令方式导出测试报告: 问题2:命令行导出测试报告的前提都有啥?---- 这里参考了老_张大大的博 ...

  5. python元组 列表 (取值、替换、插入、添加、删除)

    1.元组 列表 字典 元组( 元组是不可变的) hello = (1,2,3,4,5) type(hello)

  6. trust an HTTPS connection 安全协议 随机数 运输层安全协议 应用层安全协议 安全证书

    小结: 1.HTTPS存在不同于HTTP的默认端口及一个加密/身份验证层(在HTTP与TCP之间) HTTPS(全称:Hyper Text Transfer Protocol over Secure ...

  7. httpd反向代理实践(二)

    div.example { background-color: rgba(229, 236, 243, 1); color: rgba(0, 0, 0, 1); padding: 0.5em; mar ...

  8. 洛谷P3413 P6754

    双倍经验题 由于我先做的 P6754,所以一切思路基于 P6754 的题目 " P6754 这题就是 P3413 的究极弱化版 " --By Aliemo. P6754 Descr ...

  9. [一天一个进阶系列] - MyBatis基础篇

    前言:一直以来,很多人都是拿来主义,只停留在会使用的阶段,从未去研究挖掘其原理,剖析本质.现在慢慢探讨一下其内幕,抛砖引玉 一.简介 1)常用的持久化框架 Hibernate:是一款Java世界中最著 ...

  10. Java——I/O操作之拷贝文件

    功能描述: 利用文件输入输出流编写一个实现文件拷贝的程序,源文件名和目标文件名通过控制台输入. public static void main(String[] args) { Scanner in= ...