题意:

传送门

已知\(0 <= x <= y < p, p = 1e9 + 7\)且有

\((x+y) = b\mod p\)

\((x\times y)=c\mod p\)

求解任意一对\(x,y\),不存在输出\(-1\ -1\)。

思路:

由两式变化可得\((y - x)^2 = (b^2 -4c + p) \% p \mod p\),那么可以应用二次剩余定理解得\(y - x\)的值,我们可以知道\((x+y) = b\)或者\((x+y) = b + p\),那么直接求解即可。

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 5e4 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9 + 7;
using namespace std; ll ppow(ll a, ll b, ll mod){
ll ret = 1;
a = a % mod;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
struct TT{
ll p, d;
};
ll w;
TT mul_er(TT a, TT b, ll mod){
TT ans;
ans.p = (a.p * b.p % mod + a.d * b.d % mod * w % mod) % mod;
ans.d = (a.p * b.d % mod + a.d * b.p % mod) % mod;
return ans;
}
TT power(TT a, ll b, ll mod){
TT ret;
ret.p = 1, ret.d = 0;
while(b){
if(b & 1) ret = mul_er(ret, a, mod);
a = mul_er(a, a, mod);
b >>= 1;
}
return ret;
}
ll legendre(ll a, ll p){
return ppow(a, (p - 1) >> 1, p);
}
ll modulo(ll a, ll mod){
a %= mod;
if(a < 0) a += mod;
return a;
}
ll solve(ll n, ll p){ //x^2 = n mod p
if(n == 0) return 0;
if(n == 1) return 1;
if(p == 2) return 1;
if(legendre(n, p) + 1 == p) return -1; //无解
ll a = -1, t;
while(true){
a = rand() % p;
t = a * a - n;
w = modulo(t, p);
if(legendre(w, p) + 1 == p) break;
}
TT temp;
temp.p = a;
temp.d = 1;
TT ans = power(temp, (p + 1) >> 1, p);
return ans.p;
}
bool getans(ll sum, ll dec, ll &x, ll &y){
if((sum + dec) % 2 == 0){
y = (sum + dec) / 2;
x = y - dec;
if(x >= 0 && x + y == sum && y < MOD) return true;
else return false;
}
else return false;
}
int main(){
int T;
scanf("%d", &T);
while(T--){
ll b, c;
scanf("%lld%lld", &b, &c);
ll d = solve((b * b % MOD - 4 * c % MOD + MOD) % MOD, MOD);
if(d == -1){
printf("-1 -1\n");
continue;
}
ll x, y;
if(getans(b, d, x, y)){
printf("%lld %lld\n", x, y);
}
else if(getans(b + MOD, d, x, y)){
printf("%lld %lld\n", x, y);
}
else if(getans(b, MOD - d, x, y)){
printf("%lld %lld\n", x, y);
}
else if(getans(b + MOD, MOD - d, x, y)){
printf("%lld %lld\n", x, y);
}
}
return 0;
}

2019牛客多校第九场B Quadratic equation(二次剩余定理)题解的更多相关文章

  1. 牛客多校第九场 B Quadratic equation 模平方根

    题意: 已知 $x+y$ $mod$ $q = b$ $x*y$ $mod$ $q = c$ 已知b和c,求x和y 题解: 容易想到$b^2-4c=x^2-2xy+y^2=(x-y)^2$ 那么开个根 ...

  2. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  3. 2019牛客多校第九场AThe power of Fibonacci——扩展BM

    题意 求斐波那契数列m次方的前n项和,模数为 $1e9$. 分析 线性递推乘线性递推仍是线性递推,所以上BM. 由于模数非质数,上扩展版的BM. 递推多少项呢?本地输入发现最大为与前57项有关(而且好 ...

  4. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  5. 2019牛客多校第二场 A Eddy Walker(概率推公式)

    2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...

  6. 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解

    题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...

  7. Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)

    题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...

  8. 2019牛客暑期多校训练营(第九场)Quadratic equation——二次剩余(模奇素数)

    题意:给定p=1e9+7,构造x,y使其满足(x+y) mod p = b,(x*y) mod p = c . 思路:不考虑取模的情况下, .在取模的意义下,,因为a是模p的二次剩余的充分必要条件为  ...

  9. [2019牛客多校第二场][G. Polygons]

    题目链接:https://ac.nowcoder.com/acm/contest/882/G 题目大意:有\(n\)条直线将平面分成若干个区域,要求处理\(m\)次询问:求第\(q\)大的区域面积.保 ...

随机推荐

  1. Linux TCP漏洞 CVE-2019-11477 CentOS7 修复方法

    CVE-2019-11477漏洞简单介绍 https://cert.360.cn/warning/detail?id=27d0c6b825c75d8486c446556b9c9b68 RedHat用户 ...

  2. 1V转3.3V稳压供电的芯片电路图

    1V转3.3V供电是简单的,仅需要一个芯片和三个外围元件即可组成这样的一个1V转3.3V的电路图和升压电路了.可以持续稳定地供电3.3V给模块或者MCU灯电路.让后端工作稳定,同时也能控制电路的功耗. ...

  3. RecyclerView 源码分析(二) —— 缓存机制

    在前一篇文章 RecyclerView 源码分析(一) -- 绘制流程解析 介绍了 RecyclerView 的绘制流程,RecyclerView 通过将绘制流程从 View 中抽取出来,放到 Lay ...

  4. Python执行程序实可视化_heartrate

    最近发现了一个Python程序执行的简单实时可视化神器,名字叫 heartrate,安装完运行可以看到下面这样的炫酷过程. 虽然很炫酷,但有点看不懂. 来解释下,左边的动态数字代表每行被触发的次数.变 ...

  5. pytest:通过scope控制fixture的作用范围

    一.fixture里面有个参数scope,通过scope可以控制fixture的作用范围,根据作用范围大小划分:session>module>class>function,具体作用范 ...

  6. ubuntu更新下载软件卡住0% [Connecting to archive.ubuntu.com (2001:67c:1360:8001::23)]

    一台ubuntu系统,查看硬件和配置环境的时候发现下载卡住了 根据提示就是有ipv6地址,系统也是配置了ipv6地址的.海外机器,而且可以ping通域名 最佳解决方案 我想出了如何让apt-get再次 ...

  7. MapReduce过程源码分析

    MapReduce过程源码分析 Mapper   首先mapper完成映射,将word映射成(word,1)的形式.   MapReduce进程,Map阶段也叫MapTask,在MapTask中会通过 ...

  8. var、let、const之间的区别

    var声明变量可以重复声明,而let不可以重复声明var是不受限于块级的,而let是受限于块级var会与window相映射(会挂一个属性),而let不与window相映射var可以在声明的上面访问变量 ...

  9. tarjan复习笔记 双连通分量,强连通分量

    声明:图自行参考割点和桥QVQ 双连通分量 如果一个无向连通图\(G=(V,E)\)中不存在割点(相对于这个图),则称它为点双连通图 如果一个无向连通图\(G=(V,E)\)中不存在割边(相对于这个图 ...

  10. (十七)整合 Zookeeper组件,管理架构中服务协调

    整合 Zookeeper组件,管理架构中服务协调 1.Zookeeper基础简介 1.1 基本理论 1.2 应用场景 2.安全管理操作 2.1 操作权限 2.2 认证方式: 2.3 Digest授权流 ...