e的两种计算方式

\(e=lim_{n \to \infty}(1+\frac{1}{n})^n\)

\(e=\sum_{n=0}^{+\infty}\frac{1}{n!}\)

\(即,e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}\frac{1}{3!}+\cdot\cdot\)

\(所以2<e<1+1+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\cdot\cdot\cdot\)=3

\(即2<e<3\)

\(可知e不是整数,用反证法,假设e是有理数,即e=\frac{p}{q},且q不是1,即q\geqslant2,则\)

\(q!\cdot e=q!\sum_{n=0}^{+\infty}\frac{1}{n!}\quad\quad\quad(1)\)

\(\quad\quad\quad=\sum_{n=0}^{+\infty}q!\frac{1}{n!}\)

\(\quad\quad\quad=\sum_{n=0}^{q}q!\frac{1}{n!}+\sum_{n=q+1}^{+\infty}q!\frac{1}{n!}\)

\(上式的右侧第二项为:\\\)

\(\sum_{n=q+1}^{+\infty}q!\frac{1}{n!}\)

\(\quad=\sum_{n=q+1}^{+\infty}\frac{1}{q+1}+\frac{1}{q+1}\frac{1}{q+2}+\cdot\cdot\)

\(\quad\leqslant\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\cdot\cdot<=\frac{1}{2}\)

\((1)式的左侧\quad q!\cdot e=q!\frac{p}{q}=(q-1)!p,是整数,而右侧有分数,显然矛盾\)

互联网找的e是无理数的初等证明的更多相关文章

  1. 2014中秋节,用java为QQ游戏美女找茬写辅助

    引子        今年中秋闲在家,总要找点事做.        前几天开始学python,很早之前就有计划拿下这门语言了,可惜一直拖到现在……不可否认,我也是个拖沓症患者.在学习python的过程中 ...

  2. MT【15】证明无理数(1)

    证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...

  3. 素数计数函数$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的一个初等方法——素数定理的估计

    $\DeclareMathOperator{\lcm}{lcm}$ 本文的方法来源于GTM 190:"Problems in Algebraic Number Theory",给出 ...

  4. OSGi——面向服务架构规范简述

    OSGi——面向服务架构规范简述 去年我们组要开发一个新的产品,在讨论产品架构路线的时候,美国的架构师向大家征集了架构设计思想(我推荐了SCSF),有一位工程师向他推荐了OSGi.以前我还没有听过OS ...

  5. SuSE Apache2 VirtualHost Build

    1,linux version:openSuSE 12.1 2,add ServerName to DNS(johv.ts.com ,use the same IP) 3,mkdir /srv/www ...

  6. 终于解决了PHP调用SOAP过程中的种种问题。(转)

    最近在做公司和第三方的一个合作项目,需要调用统一验证接口和统一支付接口.由于牵涉公司机密,所以我要单独写一层PHP的接口给第三方用.前面那个验证接口主要卡在了des加密的方式上,这个有时间再说.这篇主 ...

  7. CXF之一 基础理论介绍

    WebService介绍   WebService让一个程序可以透明地调用互联网程序,不用管具体的实现细节.只要WebService公开了服务接口,远程客户端就可以调用服务.WebService是基于 ...

  8. Stern-Brocot Tree

    在<具体数学>4.5中看到了SB-Tree,觉得非常有趣,就去研究了一下. 首先介绍一下Stern-Brocot Tree.Stern-Brocot Tree是一种能将所有的最简分数都表示 ...

  9. Python爬虫入门教程 32-100 B站博人传评论数据抓取 scrapy

    1. B站博人传评论数据爬取简介 今天想了半天不知道抓啥,去B站看跳舞的小姐姐,忽然看到了评论,那就抓取一下B站的评论数据,视频动画那么多,也不知道抓取哪个,选了一个博人传跟火影相关的,抓取看看.网址 ...

随机推荐

  1. python将指定目录下的所有文件夹用随机数重命名

    我的目的在于打乱数据顺序,便于GAN训练: import random import os path = 'hunhe_7' #目标文件夹 listname = os.listdir(path) #遍 ...

  2. MongoDB快速入门教程 (4.2)

    4.2.Mongoose实现增删查改 中文文档地址: https://cn.mongoosedoc.top/docs/guide.html 4.2.1.Mongoose是什么? Mongoose是Mo ...

  3. 不错的UI设计

  4. (私人收藏)[开发必备]HTML5最全快速查找离线手册(可查询可学习,带实例)

    [开发必备]HTML5最全快速查找离线手册(可查询可学习,带实例) HTML5最全快速查找离线手册:https://pan.baidu.com/s/19seE8TJQSx4IsWgXtKQS0Aj9y ...

  5. css div如何隐藏?

    在我们平时布局网站的时候,想要把div进行隐藏,但是很多人不知道css控制div显示隐藏?下面我们来讲解一下css如何让div隐藏. 1.使用display:none来隐藏div 我们可以使用disp ...

  6. 【Python】any() 或者 or

    前言 在我之前的文章中有any()和all()的对比:any()和all()对比其中介绍了any()函数的基本特性---可迭代对象中有任意一个不为False的时候,返回True,如果可迭代对象为空的话 ...

  7. 洛谷P2566 [SCOI2009]围豆豆(状压dp+spfa)

    题目传送门 题解 Σ(っ °Д °;)っ 前置知识 射线法:从一点向右(其实哪边都行)水平引一条射线,若射线与路径的交点为偶数,则点不被包含,若为奇数,则被包含.(但注意存在射线与路径重合的情况) 这 ...

  8. efcore 跨表查询,实现一个接口内查询两个不同数据库里各自的表数据

    最近有efcore跨库查询的需求,研究了下colder框架里文档的分库实现,发现并不能完全实现一个接口下的跨库查询请求,只能满足一个业务层构造指定的唯一一个数据库访问接口. 先说下文档是怎么实现的 D ...

  9. vue组件keepAlive的使用

    需要达到的效果: 列表页------->详情页/修改------>返回列表页(缓存列表页) 其它不缓存 //vuex/index.js new Vuex.store({ state: { ...

  10. java 基本语法(十) 数组(三) 二维数组

    1.如何理解二维数组? 数组属于引用数据类型数组的元素也可以是引用数据类型一个一维数组A的元素如果还是一个一维数组类型的,则,此数组A称为二维数组. 2.二维数组的声明与初始化 正确的方式: int[ ...