BZOJ 3112: [Zjoi2013]防守战线 [单纯形法]
题目描述
战线可以看作一个长度为n 的序列,现在需要在这个序列上建塔来防守敌兵,在序列第i 号位置上建一座塔有Ci 的花费,且一个位置可以建任意多的塔,费用累加计算。有m 个区间[L1, R1], [L2, R2], …, [Lm, Rm],在第i 个区间的范围内要建至少Di 座塔。求最少花费。
输入输出格式
输入格式:
第一行为两个数n, m。
接下来一行,有n 个数,描述C 数组。
接下来m 行,每行三个数Li,Ri,Di,描述一个区间。
输出格式:
仅包含一行,一个数,为最少花费。
输入输出样例
5 3
1 5 6 3 4
2 3 1
1 5 4
3 5 2
11
说明
【样例说明】
位置1 建2 个塔,位置3 建一个塔,位置4 建一个塔。花费1*2+6+3=11。
【数据规模】
对于20%的数据,n≤20,m≤20。
对于50%的数据(包括上部分的数据),Di 全部为1。
对于70%的数据(包括上部分的数据),n≤100,m≤1000。
对于100%的数据,n≤1000,m≤10000,1≤Li≤Ri≤n,其余数据均≤10000。
[2016-12-7]
和08志愿者招募很像
设X为每个位置建塔数量的向量
最小化 CX
满足约束 第i个约束为x[l[i]]+x[l[i]+1]+...+x[r[i]]>=d[i]
即AX>=D
A[i][j]为1表示第i个约束中j在[l[i],r[i]]里,可以贡献到和中
对偶之后,就成了
最大化 DX
满足约束 AT X<=C
注意这时候这时候是n个约束,m个变量
[2017-03-11]
重写一遍
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,M=1e4+;
const double INF=1e15,eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,m;
double a[N][M];
int q[M];
void Pivot(int l,int e){
double t=a[l][e];a[l][e]=;
for(int j=;j<=n;j++) a[l][j]/=t;
int p=;
for(int j=;j<=n;j++) if(abs(a[l][j])>eps) q[++p]=j;
for(int i=;i<=m;i++) if(i!=l && abs(a[i][e])>eps){
double t=a[i][e];a[i][e]=;
for(int j=;j<=p;j++) a[i][q[j]]-=t*a[l][q[j]];
}
}
void simplex(){
while(true){
int l=,e=; double mn=INF;
for(int j=;j<=n;j++) if(a[][j]>eps) {e=j;break;}
if(!e) return;
for(int i=;i<=m;i++)
if(a[i][e]>eps && a[i][]/a[i][e]<mn) {mn=a[i][]/a[i][e];l=i;}
if(!l) return;//unbounded
Pivot(l,e);
}
}
int main(){
freopen("in","r",stdin);
n=read();m=read();
swap(n,m);
for(int i=;i<=m;i++) a[i][]=read();
for(int j=;j<=n;j++){
int l=read(),r=read();
for(int i=l;i<=r;i++) a[i][j]=;
a[][j]=read();
}
simplex();
printf("%d",int(-a[][]+0.5));
}
BZOJ 3112: [Zjoi2013]防守战线 [单纯形法]的更多相关文章
- BZOJ 3112 [Zjoi2013]防守战线
题解:单纯形:转化为对偶问题: 对于最大化 cx,满足约束 Ax<=b ,x>0 对偶问题为 最小化 bx,满足约束 ATx>=c ,x>0 (AT为A的转置) 这一题的内存真 ...
- BZOJ 3112 Zjoi2013 防守战线 单纯形
题目大意: 单纯形*2.. . #include <cmath> #include <cstdio> #include <cstring> #include < ...
- BZOJ 3112 [Zjoi2013]防守战线 线性规划
题意: 简单叙述: 一个长度为n的序列,在每一个点建塔的费用为Ci.有m个区间.每一个区间内至少有Dj个塔.求最小花费. 方法:线性规划 解析: 与上一题相似.相同使用对偶原理解题.解法不再赘述. 代 ...
- 【BZOJ3112】[Zjoi2013]防守战线 单纯形法
[BZOJ3112][Zjoi2013]防守战线 题解:依旧是转化成对偶问题,然后敲板子就行了~ 建完表后发现跟志愿者招募的表正好是相反的,感觉很神奇~ #include <cstdio> ...
- ZJOI2013 防守战线
题目 战线可以看作一个长度为\(n\)的序列,现在需要在这个序列上建塔来防守敌兵,在序列第\(i\)号位置上建一座塔有\(C_i\)的花费,且一个位置可以建任意多的塔,费用累加计算.有\(m\)个区间 ...
- BZOJ3112 [Zjoi2013]防守战线 【单纯形】
题目链接 BZOJ3112 题解 同志愿者招募 费用流神题 单纯形裸题 \(BZOJ\)可过 洛谷被卡.. #include<algorithm> #include<iostream ...
- bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线
学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...
- 数学(线性规划): ZJOI2013 防守战线
偷懒用的线性规划. #include <iostream> #include <cstring> #include <cstdio> using namespace ...
- bzoj3112 [Zjoi2013]防守战线
正解:线性规划. 直接套单纯形的板子,因为所约束条件都是>=号,且目标函数为最小值,所以考虑对偶转换,转置一下原矩阵就好了. //It is made by wfj_2048~ #include ...
随机推荐
- SQL Server:APPLY表运算符
SQL Server 2005(含)以上版本,新增了APPLY表运算,为我们日常查询带来了极大的方便. 新增的APPLY表运算符把右表表达式应用到左表表达式中的每一行.它不像JOIN那样先计算那个表表 ...
- 背水一战 Windows 10 (27) - 控件(文本类): TextBlock
[源码下载] 背水一战 Windows 10 (27) - 控件(文本类): TextBlock 作者:webabcd 介绍背水一战 Windows 10 之 控件(文本类) TextBlock 示例 ...
- 【C#】可空类型(Nullable)
C# 可空类型(Nullable) C# 提供了一个特殊的数据类型,nullable 类型(可空类型),可空类型可以表示其基础值类型正常范围内的值,再加上一个 null 值. 例如,Nullable& ...
- poj1113--凸包(Andrew)
题目大意: 给出平面上若干个点的坐标,你的任务是建一个环形围墙,把所有的点围在里面,且距所有点的距离不小于l.求围墙的最小长度. 思路: 很容易得出答案就是凸包周长+以l为半径的圆的周长. 这里讲一下 ...
- python计算器
思路:优先级处理思路一:正则表达式+递归(计算时间慢)思路二:堆栈的方式队列:先进先出电梯-->队列上电梯(入队123):第三个人3,第二个人2,第一个人1>>> li = [ ...
- WPF 数据绑定 1_1 基础知识&绑定到元素属性
A.数据绑定基础: 数据源对象:WPF将从该对象中提取信息,交由目标对象进行显示. 目标对象:从数据源中提取信息,并赋给该对象的属性. B.绑定到元素属性 最简单的绑定情形则是将一个源对象指定为一个W ...
- VB6.0 和VB.NET 函数对比
VB6.0和VB.Net的对照表 VB6.0 VB.NET AddItem Object名.AddItem Object名.Items.Add ListBox1.Items.Add ComboBox1 ...
- iOS 点击TextField不弹出软键盘的解决方案
开发中遇到: 在模拟器里面,textfield可以通过电脑键盘输入,可是怎么也不会自动弹出模拟器软键盘 解决方案: 切换一下键盘,command+shift+k,Xcode6.3 中只能是一种输入源
- 基本动画CABasicAnimation - 完成之后闪回初始状态
基本动画CABasicAnimation 结束之后,默认闪回初始状态,那怎么解决呢? position需要设备两个属性: // MARK: - 结束后不要闪回去 anim.removedOnCompl ...
- android SQLite 批量插入数据慢的解决方案 (针对于不同的android api 版本)
原地址 :http://www.cnblogs.com/wangmars/p/3914090.html SQLite,是一款轻型的数据库,被广泛的运用到很多嵌入式的产品中,因为占用的资源非常少,二其中 ...