Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<cmath>
#include<map>
using namespace std;
typedef long long ll;
const int maxn=1e5+;
const int Inf=0x3f3f3f3f;
struct edge
{
int to;
double r;
double c;
int next;
} edge[maxn]; int n,m,s;
double v;
int len;
int head[maxn];
double dis[maxn];
int vis[maxn];
int num[maxn];
void add(int u,int v,double r,double c)
{
edge[len].to = v;
edge[len].r = r;
edge[len].c = c;
edge[len].next = head[u];
head[u] = len++;
}
bool spfa()
{
queue<int > q;
dis[s] = v;
q.push(s);
vis[s] = ;
num[s]++;
while(!q.empty())
{
int t = q.front();
q.pop();
vis[t] = ;
for(int i = head[t];i!= -;i = edge[i].next)
{
int id = edge[i].to;
if(dis[id]< (dis[t]-edge[i].c)*edge[i].r)
{
dis[id] = (dis[t]-edge[i].c)*edge[i].r;
if(vis[id] == )
{
q.push(id);
vis[id] = ;
num[id]++;
if(num[id]> n)
return ;
}
}
}
}
return ;
}
void init()
{
for(int i = ;i<= n;i++)
dis[i] = -;
memset(vis,,sizeof(vis));
memset(num,,sizeof(num));
memset(head,-,sizeof(head));
}
int main()
{
cin>>n>>m>>s>>v;
init();
for(int i = ;i<= m;i++)
{
int a,b;
double ra,rb,ca,cb;
scanf("%d %d %lf %lf %lf %lf",&a,&b,&ra,&ca,&rb,&cb);
add(a,b,ra,ca);
add(b,a,rb,cb);
}
if(spfa())
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
return ;
}

Currency Exchange(SPFA判负环)的更多相关文章

  1. POJ1680 Currency Exchange SPFA判正环

    转载来源:優YoU  http://user.qzone.qq.com/289065406/blog/1299337940 提示:关键在于反向利用Bellman-Ford算法 题目大意 有多种汇币,汇 ...

  2. POJ 3259 Wormholes(SPFA判负环)

    题目链接:http://poj.org/problem?id=3259 题目大意是给你n个点,m条双向边,w条负权单向边.问你是否有负环(虫洞). 这个就是spfa判负环的模版题,中间的cnt数组就是 ...

  3. Poj 3259 Wormholes(spfa判负环)

    Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 42366 Accepted: 15560 传送门 Descr ...

  4. spfa判负环

    bfs版spfa void spfa(){ queue<int> q; ;i<=n;i++) dis[i]=inf; q.push();dis[]=;vis[]=; while(!q ...

  5. poj 1364 King(线性差分约束+超级源点+spfa判负环)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14791   Accepted: 5226 Description ...

  6. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  7. BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划

    BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ...

  8. [P1768]天路(分数规划+SPFA判负环)

    题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...

  9. LightOj 1221 - Travel Company(spfa判负环)

    1221 - Travel Company PDF (English) Statistics problem=1221" style="color:rgb(79,107,114)& ...

  10. poj 2049(二分+spfa判负环)

    poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...

随机推荐

  1. OAuth2.0-2jwt令牌

    JWT令牌 解决了之前普通令牌每次都要远程校验令牌带来得网络消耗:(有网友说可以将令牌验证从认证服务器上放到各个资源服务器上,不知是否可行?) JWT令牌的优点: 1.jwt基于json,非常方便解析 ...

  2. elasticsearch 高级搜索示例 es7.0

    基础数据 创建索引 PUT mytest { "mappings": { "properties": { "title": { " ...

  3. Jmeter(二十) - 从入门到精通 - JMeter监听器 -下篇(详解教程)

    1.简介 监听器用来监听及显示JMeter取样器测试结果,能够以树.表及图形形式显示测试结果,也可以以文件方式保存测试结果,JMeter测试结果文件格式多样,比如XML格式.CSV格式.默认情况下,测 ...

  4. 学习 Python,这 22 个包怎能不掌握?

    如今全球各个行业内 Python 的使用状况怎么样呢? 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去 ...

  5. NIO(一):Buffer缓冲区

    一.NIO与IO: IO:  一般泛指进行input/output操作(读写操作),Java IO其核心是字符流(inputstream/outputstream)和字节流(reader/writer ...

  6. Eclipse工具的简单使用

    前言 虽然编写Java用Idea比较好,但是对于正处于大学阶段的我,还是要和老师的步伐保持一致,但是,用的Idea这个工具多了,我就感觉对eclipse这个工具不是怎么熟悉了,甚至还有点对一些工具的使 ...

  7. java 判断集合元素唯一的原理

    一 ArrayList的contains方法判断元素是否重复原理 ArrayList的contains方法会使用调用方法时,传入的元素的equals方法依次与集合中的旧元素 所比较,从而根据返回的布尔 ...

  8. C#LeetCode刷题-二分查找​​​​​​​

    二分查找篇 # 题名 刷题 通过率 难度 4 两个排序数组的中位数 C#LeetCode刷题之#4-两个排序数组的中位数(Median of Two Sorted Arrays)-该题未达最优解 30 ...

  9. C#LeetCode刷题之#268-缺失数字(Missing Number)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4056 访问. 给定一个包含 0, 1, 2, ..., n 中  ...

  10. Golang 简单爬虫实现,爬取小说

    为什么要使用Go写爬虫呢? 对于我而言,这仅仅是练习Golang的一种方式. 所以,我没有使用爬虫框架,虽然其很高效. 为什么我要写这篇文章? 将我在写爬虫时找到资料做一个总结,希望对于想使用Gola ...