Acesrc and String Theory

Problem Description

Acesrc is a famous string theorist at Nanjing University second to none. He insists that we should always say an important thing k times. He also believes that every string that can be obtained by concatenating k copies of some nonempty string is splendid. So, he always teaches newcomers, ``String theory problems are important! String theory problems are important! ... String theory problems are important!"

Today, he wants to examine whether the newcomers remember his instruction. He presents a string consisting of lower case letters and asks them the number of splendid substrings of the presented string. No one can solve this problem, and they will be scolded for hours. Can you help them solve this problem?

Note that equal splendid substrings occurred in different positions should be counted separately

给出一个字符串\(s\),问\(s\)中有多少个子串是有\(k\)个相同串拼接而成的

有个暴力的做法,枚举循环节长度然后哈希,复杂度\(O(\frac{n^2}{k})\)

现在考虑\(O(n\log{n})\)的做法,同样是枚举循环节长度\(len\),然后我们枚举循环节的起始位置,假设现在起始位置是\(pos\),那么我们先找从\(pos\)开始的\(k-1\)个循环节,需要保证每个循环节\(lcp(pos,pos+i\cdot len)\ge len\)

现在有了\(k-1\)个循环节,位置从\(L(pos)\),到\(R(pos+(k-1)\cdot len-1)\),现在要找符合条件的\(k\)循环子串,我们只要知道\(L\)和\(R+1\)的最长公共前缀\(lcp\)和以\(R\)结尾和以\(L+1\)结尾的最长公共后缀\(lcs\),就能知道这个\(k-1\)循环节对答案的贡献,我们显然可以构造一个字符串\(s_{l-pre}s_{l-pre+1}\cdots s_l s_{l+1}\cdots s_r s_{r+1}\cdots s_{r+suf}\),其中\(pre+suf==len && pre\le lcs && suf\le lcp\),所以当\(lcs+lcp\ge len\)的时候,对答案的贡献是\(lcs+lcp-len+1\),注意左边界和右边界的处理情况,有点小细节,防止重复计算

由于枚举循环节,复杂度为调和级数\(O(\sum_{i=1}^{n}\frac{n}{i})=O(n\log n)\)

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 3e5+7;
using LL = int_fast64_t;
LL ret;
int n,K,rk[2][MAXN],sec[MAXN],c[MAXN],sa[2][MAXN],height[2][MAXN],ST[2][MAXN][20];
char s[MAXN],t[MAXN];
void SA(int m, char *s, int *rk, int *sa, int *height){
int *RK = rk, *SEC = sec;
for(int i = 0; i <= m; i++) c[i] = 0;
for(int i = 1; i <= n; i++) c[RK[i]=s[i]]++;
for(int i = 1; i <= m; i++) c[i] += c[i-1];
for(int i = n; i >= 1; i--) sa[c[RK[i]]--] = i;
for(int k = 1; k <= n; k <<= 1){
int p = 0;
for(int i = n - k + 1; i <= n; i++) SEC[++p] = i;
for(int i = 1; i <= n; i++) if(sa[i]>k) SEC[++p] = sa[i]-k;
for(int i = 0; i <= m; i++) c[i] = 0;
for(int i = 1; i <= n; i++) c[RK[SEC[i]]]++;
for(int i = 1; i <= m; i++) c[i] += c[i-1];
for(int i = n; i >= 1; i--) sa[c[RK[SEC[i]]]--] = SEC[i];
swap(RK,SEC);
p = 0;
RK[sa[1]] = ++p;
for(int i = 2; i <= n; i++) RK[sa[i]] = SEC[sa[i]]==SEC[sa[i-1]] and SEC[sa[i]+k]==SEC[sa[i-1]+k] ? p : ++p;
if(p==n) break;
m = p;
}
int k = 0;
for(int i = 1; i <= n; i++) rk[sa[i]] = i;
for(int i = 1; i <= n; i++){
if(rk[i]==1) continue;
if(k) k--;
int j = sa[rk[i]-1];
while(i+k<=n and j+k<=n and s[i+k]==s[j+k]) k++;
height[rk[i]] = k;
}
}
void build_ST(){
for(int i = 1; i <= n; i++){
ST[0][i][0] = height[0][i];
ST[1][i][0] = height[1][i];
}
for(int j = 1; (1<<j) <= n; j++){
for(int i = 1; (i+(1<<j))-1 <= n; i++){
ST[0][i][j] = min(ST[0][i][j-1],ST[0][i+(1<<(j-1))][j-1]);
ST[1][i][j] = min(ST[1][i][j-1],ST[1][i+(1<<(j-1))][j-1]);
}
}
}
int qmin(int tg, int L, int R){
int d = log2(R-L+1);
return min(ST[tg][L][d],ST[tg][R-(1<<d)+1][d]);
}
int lcp(int tg, int l, int r){
int rkl = rk[tg][l], rkr = rk[tg][r];
if(rkl>rkr) swap(rkl,rkr);
return qmin(tg,rkl+1,rkr);
}
void calc(int pos, int len){
for(int i = 1; i < K - 1; i++) if(lcp(0,pos,pos+i*len)<len) return;
int L = pos, R = L + (K-1) * len - 1;
int LCP = min(len,lcp(0,L,R+1));
int LCS = min(len-1,lcp(1,n+1-R,n+1-L+1));
if(LCP+LCS>=len) ret += LCP + LCS - len + 1;
}
void solve(){
ret = 0;
scanf("%d %s",&K,s+1);
n = strlen(s+1);
if(K==1){
printf("%I64d\n",1ll*n*(n+1)/2);
return;
}
for(int i = 1; i <= n; i++) t[i] = s[n+1-i];
SA(128,s,rk[0],sa[0],height[0]);
SA(128,t,rk[1],sa[1],height[1]);
build_ST();
for(int len = 1; len <= n; len++){
for(int i = 1; i <= n; i += len){
if(i+(K-1)*len-1>=n) break;
calc(i,len);
}
}
printf("%I64d\n",ret);
}
int main(){
int T;
for(scanf("%d",&T); T; T--) solve();
return 0;
}

HDU6661 Acesrc and String Theory【SA】的更多相关文章

  1. Microsoft SQL Server 【Windows 身份验证】和 【sa】都无法登录的解决方案

    1.修改启动参数:打开[SQL Server 配置管理器(SQL Server Configuration Manager)]→右键[SQL Server(MSSQLSERVER)]属性→高级(Adv ...

  2. 557. Reverse Words in a String III【easy】

    557. Reverse Words in a String III[easy] Given a string, you need to reverse the order of characters ...

  3. hdu 6661 Acesrc and String Theory (后缀数组)

    大意: 求重复$k$次的子串个数 枚举重复长度$i$, 把整个串分为$n/i$块, 如果每块可以$O(1)$计算, 那么最终复杂度就为$O(nlogn)$ 有个结论是: 以$j$开头的子串重复次数最大 ...

  4. HDOJ3374 String Problem 【KMP】+【最小表示法】

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. C++中int与string的相互转换【转】

    一.int转string 1.c++11标准增加了全局函数std::to_string: string to_string (int val); string to_string (long val) ...

  6. 213. String Compression【easy】

    Implement a method to perform basic string compression using the counts of repeated characters. For ...

  7. JAVA的String 类【转】

    String类 1.String对象的初始化 由于String对象特别常用,所以在对String对象进行初始化时,Java提供了一种简化的特殊语法,格式如下: String s = “abc”; s ...

  8. bzoj 2251: [2010Beijing Wc]外星联络【SA】

    先求SA,然后按字典序从小到大枚举子串,每到一个后缀从长到短枚举子串(跳过长为he[i]的和前一段重复的子串),然后维护一个点p,保证i~p之间最小的he>=当前枚举长度,p是单调向右移的 然后 ...

  9. poj 2774 Long Long Message【SA】

    把两个串接到一起求一个SA,然后找最大的sa[i]和sa[i-1]不是一个串的he[i] #include<iostream> #include<cstdio> #includ ...

随机推荐

  1. LeetCode498 对角线遍历

    给定一个含有 M x N 个元素的矩阵(M 行,N 列),请以对角线遍历的顺序返回这个矩阵中的所有元素,对角线遍历如下图所示. 示例: 输入: [ [ 1, 2, 3 ], [ 4, 5, 6 ], ...

  2. 【C++】《C++ Primer 》第十章

    第十章 泛型算法 一.概述 因为它们实现共同的操作,所以称之为"算法".而"泛型",指的是它们可以操作在多种容器类型上. 泛型算法并不直接操作容器,而是遍历由两 ...

  3. 【Sphinx】 为Python自动生成文档

    sphinx 前言 Sphinx是一个可以用于Python的自动文档生成工具,可以自动的把docstring转换为文档,并支持多种输出格式包括html,latex,pdf等 开始 建一个存放文档的do ...

  4. C++ 异常机制(上)

    目录 一.概念 二.异常的好处 三.基本语法 四.栈解旋 五.异常接口声明 六.异常对象的内存模型 七.异常对象的生命周期 一.概念 异常:存在于运行时的反常行为,这些行为超过了函数的正常的功能范围. ...

  5. 【Python】国内pip节点

    pip在国内使用国内节点: http://pypi.douban.com/simple 现在已经无法使用了,新版的python3需要使用https://pypi.douban.com/simple/ ...

  6. 【Oracle】表空间配额问题

    由于需求,需要新建用户,但是新建的用户,会有相关的配额跟着,莫名其妙的问题让人很头疼 下面介绍下如何修改成不限制配额 select * from user_ts_quotas ; alter user ...

  7. 深入解析vue响应式原理

    摘要:本文主要通过结合vue官方文档及源码,对vue响应式原理进行深入分析. 1.定义 作为vue最独特的特性,响应式可以说是vue的灵魂了,表面上看就是数据发生变化后,对应的界面会重新渲染,那么响应 ...

  8. SAP demo包 示例程序

    在SAP的这个开发类中SABAPDEMOS,存放了N多的demo程序 有空的时候,可以看看.

  9. APM调用链产品对比

    APM调用链产品对比 随着企业经营规模的扩大,以及对内快速诊断效率和对外SLA(服务品质协议,service-level agreement)的追求,对于业务系统的掌控度的要求越来越高,主要体现在: ...

  10. Ajax中的同源政策

    Ajax中的同源政策 Ajax请求限制 Ajax只能向自己的服务器发送请求.比如现在有一个A网站.有一个B网站,A网站中的HTML文件只能向A网站服务器中发送Ajax请求,B网站中的HTML文件只能向 ...