原题传送门

题解一堆\(O(n)\)算法真给我看傻了。

考虑\(10=2*5\),因子2肯定更多,所以计算因子5的个数即可。


从5到n这\(n-5+1\)个数的阶乘里面,都各自含有一个因子\(5=1*5\)。

从10到n这\(n-10+1\)个数的阶乘里面,都各自含有一个因子\(10=2*5\)。

故因子5的总个数为\((n-5+1)+(n-10+1)+...+(n \% 5+1)\)。

不难发现这是一个等差数列,首尾项如上,项数为\(n/5\)。


然而这样并不对,因为我们只考虑到了含有一个因子5的情况,但像\(25=5*5\)这样含有两个因子5的情况,我们还得重复计算。

因此,枚举我们要统计的因子i,并用上面等差数列的思想分别计算其个数,统计入答案即可。


值得注意的一点:由于前面在因子\(i=5\)的时候,我们已经将\(25=5*5\)中的一个因子5统计入答案。

因此当因子\(i=25\)的时候,只要统计剩余的一个因子5即可。

#include<cstdio>

#define ll long long

using namespace std;

int main()
{
// freopen("in.in","r",stdin);
int n;
scanf("%d",&n);
ll ans=0;
for(int i=5;i<=n;i*=5)
ans+=(ll)((n-i+1)+(n%i+1))*(n/i)/2;
printf("%lld\n",ans);
return 0;
}

【题解】p2388阶乘之乘的更多相关文章

  1. 洛谷——P2388 阶乘之乘

    P2388 阶乘之乘 题目背景 不告诉你…… 题目描述 求出1!*2!*3!*4!*……*n!的末尾有几个零 输入输出格式 输入格式: n(n<=10^8) 输出格式: 有几个零 输入输出样例 ...

  2. P2388 阶乘之乘

    首先感谢wxy学长之前告诉我这道题,结果今天竟然一眼切了,咕咕咕 题目链接: P2388 阶乘之乘 题目思路: 第一眼看到一定想到的是先求一下阶乘然后看最后又几个零,但是这样会TIL啊 想一下0是怎么 ...

  3. 洛谷 P2388 阶乘之乘 题解

    本蒟蒻又来发题解了QwQ; 看到这个题目,本蒟蒻第一眼就想写打个暴力: 嗯,坏习惯: 但是,动动脑子想一想就知道,普通的的暴力是过不了的: 但是,身为蒟蒻的我,也想不出什么高级的数学方法来优化: 好, ...

  4. 题解 洛谷 P2388 阶乘之乘

    目录 简要题意 题解 主要思路 一个 \(\omega(n)\) 的算法 一个 \(O(\log n)\) 的算法 一个算法 代码 算法 \(1\)(\(\omega(n)\)) 算法 \(2\) 算 ...

  5. 洛谷P2388 阶乘之乘

    题目背景 不告诉你-- 题目描述 求出1!*2!*3!*4!*--*n!的末尾有几个零 输入输出格式 输入格式: n(n<=10^8) 输出格式: 有几个零 输入输出样例 输入样例#1: 复制 ...

  6. 【洛谷 P2388 阶乘之乘】模拟

    分析 求因数5的个数 AC代码 #include<iostream> using namespace std; int main() { long long n,t,ans=0,s=0; ...

  7. 洛谷题解 P1134 【阶乘问题】

    原题传送门 题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12!=1×2×3×4×5×6×7×8×9×10×11×12=479,001,600 12的阶乘最右边的非零位为6. ...

  8. 7.20试机测 T3 阶乘之和 暴力AC题解

    7.20试机测  T3 阶乘之和 暴力AC题解 题外话:此乃本蒟蒻发表的第一篇题解,大家多多关照,支持一下,谢谢 题面 3.阶乘之和(sum.pas/in/out) 问题描述: 给定一个非负整数 n, ...

  9. 【题解笔记】PTA基础6-10:阶乘计算升级版

    题目地址:https://pintia.cn/problem-sets/14/problems/742 前言 咱目前还只能说是个小白,写题解是为了后面自己能够回顾.如果有哪些写错的/能优化的地方,也请 ...

随机推荐

  1. 如何快速的找到好玩的旅游景点信息?Python爬虫帮你轻松解决

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 喜欢的朋友欢迎关注小编 当我们出去旅游时,会看这个地方有哪些旅游景点,景点 ...

  2. 自动网络搜索(NAS)在语义分割上的应用(一)

    [摘要]本文简单介绍了NAS的发展现况和在语义分割中的应用,并且详细解读了两篇流行的work:DARTS和Auto-DeepLab. 自动网络搜索 多数神经网络结构都是基于一些成熟的backbone, ...

  3. ibatis BindingException Parameter 'status' not found. Available parameters are [arg1, arg0, param1, param2] 解决方法

    最近做项目测试mapper接口时出现了下面这个异常,接口的函数参数找不到,网上搜索发现可能是@Param注解问题. 查阅Mybatis官方文档对@Param的解释如下: 在代码中加入, 异常消失 测试 ...

  4. Jquery封装: WebSocket插件

    1 $(function() { var websocket = null; //浏览器是否支持websocket if ("WebSocket" in window) { try ...

  5. Cypress系列(22)- 可操作类型的命令 之 select()

    如果想从头学起Cypress,可以看下面的系列文章哦 https://www.cnblogs.com/poloyy/category/1768839.html .select() 在 <sele ...

  6. @atcoder - AGC029F@ Construction of a tree

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 N - 1 个 {1, 2, ..., N} 的子集,第 ...

  7. CollectionView的cell长按事件实现

    原生cell没有长按事件,我们需要使用手势识别来绑定CollectionView.创建并绑定CollectionView如下: (void)viewDidLoad { [super viewDidLo ...

  8. pip速度过慢解决方法

    国内源: 新版ubuntu要求使用https源,要注意. 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云:http://mirrors.aliyun.c ...

  9. Jmeter基础004----增加参数化

    一.参数化概述 1.参数化概念 参数化就是动态的获取并设置数据,当执行批量操作时,如批量插入或批量删除,之前每执行完一次就需要修改一次,效率太低,参数化可以代替人工获取并设置数据,安全且高效! 2.J ...

  10. 数据库整理(三) SQL基础

    数据库整理(三) SQL基础 SQL语言的特点 集数据定义语言(DDL),数据操纵语言(DML),数据控制语言(DCL)功能于一体. 可以独立完成数据库生命周期中的全部活动: ​ ●定义和修改.删除关 ...