对数据分析时,通常需要对数据进行分组,并对每个分组进行聚合运算。在一定意义上,窗口也是一种分组统计的方法。

分组数据

DataFrame.groupBy()返回的是GroupedData类,可以对分组数据应用聚合函数、apply()函数和pivot()函数。

常用的聚合函数是:

  • count():统计数量
  • mean(*cols), avg(*cols):计算均值
  • max(*cols),min(*cols):计算最大值和最小值
  • sum(*cols):计算累加和

举个例子,对DataFrame计算最大的age和height列的值:

df.groupBy().max('age', 'height').collect() 

一,聚合函数

对于聚合函数,还可以使用pandas中的函数,这需要使用GroupedData类的agg(*exprs)函数,该函数的作用是计算聚合值,并返回DataFrame对象。

可以用于agg()函数中的聚合函数主要分为两类:

  • 内置的聚合函数:avg, max, min, sum, count
  • 分组聚合的pandas UDF:pyspark.sql.functions.pandas_udf()

对于内置的聚合函数,可以通过pyspark.sql.functions来导入:

gdf = df.groupBy(df.name)
from pyspark.sql import functions as F
sorted(gdf.agg(F.min(df.age)).collect())
#[Row(name='Alice', min(age)=2), Row(name='Bob', min(age)=5)]

这里重点介绍如何创建一个pandas UDF,Pandas UDF由Spark使用Arrow来传输数据,并通过Pandas对数据进行矢量化操作。在创建Pandas UDF时,需要通过pandas_udf作为修饰器或包装函数。

pyspark.sql.functions.pandas_udf(f=None, returnType=None, functionType=None)

参数注释:

  • f:UDF
  • returnType:UDF的返回值类型
  • functionType:一个枚举值,它的枚举类型是:pyspark.sql.functions.PandasUDFType,默认值是SCALAR,返回标量值。

举个例子,创建一个UDF,统计字符的个数。

在修饰器中定义函数的返回值类型是int,参数的模式是接收一个序列,返回一个序列,序列中的元素的数据类型是由修饰器决定的。

import pandas as pd
from pyspark.sql.functions import pandas_udf @pandas_udf(IntegerType())
def slen(s: pd.Series) -> pd.Series:
return s.str.len()

在定义函数时,显式指定输入参数的类型是MyType,函数返回值的类型是str:

# 输入参数类型提示为MyType,函数返回类型提示为str
def foo(name: MyType) -> str:
return str(name)

二,用户自定义的pandas函数

pyspark共支持5种UDF的模式,分别表示从形参到返回值的模式

模式1:从DataFrame到DataFrame

@pandas_udf("col1 string, col2 long")
def func(s1: pd.Series, s2: pd.Series, s3: pd.DataFrame) -> pd.DataFrame:
s3['col2'] = s1 + s2.str.len()
return s3

模式2:从Series到Series

@pandas_udf("string")
def to_upper(s: pd.Series) -> pd.Series:
return s.str.upper()

模式3:从Series到Scalar,这种模式就是聚合函数,把多个值按照公式转换为标量值。

@pandas_udf("double")
def mean_udf(v: pd.Series) -> float:
return v.mean()

模式4:Iterator[pandas.Series] -> Iterator[pandas.Series]

from typing import Iterator
@pandas_udf("long")
def plus_one(iterator: Iterator[pd.Series]) -> Iterator[pd.Series]:
for s in iterator:
yield s + 1 df = spark.createDataFrame(pd.DataFrame([1, 2, 3], columns=["v"]))
df.select(plus_one(df.v)).show()
+-----------+
|plus_one(v)|
+-----------+
| 2|
| 3|
| 4|
+-----------+

模式5:Iterator[Tuple[pandas.Series, …]] -> Iterator[pandas.Series]

from typing import Iterator, Tuple
from pyspark.sql.functions import struct, col
@pandas_udf("long")
def multiply(iterator: Iterator[Tuple[pd.Series, pd.DataFrame]]) -> Iterator[pd.Series]:
for s1, df in iterator:
yield s1 * df.v df = spark.createDataFrame(pd.DataFrame([1, 2, 3], columns=["v"]))
df.withColumn('output', multiply(col("v"), struct(col("v")))).show()
+---+------+
| v|output|
+---+------+
| 1| 1|
| 2| 4|
| 3| 9|
+---+------+

三,apply(udf)函数和applyInPandas(func, schema)

apply()和applyInPandas()函数的作用是:对每个分组应用函数,计算每个分组的聚合值。

apply(udf)函数使用 pyspark.sql.functions.pandas_udf() 作为参数,applyInPandas(func, schema)函数使用python 原生函数作为参数。

例如,apply()函数使用pandas_udf作为参数:

from pyspark.sql.functions import pandas_udf, PandasUDFType
df = spark.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
("id", "v"))
@pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP)
def normalize(pdf):
v = pdf.v
return pdf.assign(v=(v - v.mean()) / v.std())
df.groupby("id").apply(normalize).show()
+---+-------------------+
| id| v|
+---+-------------------+
| 1|-0.7071067811865475|
| 1| 0.7071067811865475|
| 2|-0.8320502943378437|
| 2|-0.2773500981126146|
| 2| 1.1094003924504583|
+---+-------------------+

例如,applyInPandas()使用python 原生的函数作为参数:

import pandas as pd
from pyspark.sql.functions import pandas_udf, ceil
df = spark.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
("id", "v"))
def normalize(pdf):
v = pdf.v
return pdf.assign(v=(v - v.mean()) / v.std())
df.groupby("id").applyInPandas(
normalize, schema="id long, v double").show()
+---+-------------------+
| id| v|
+---+-------------------+
| 1|-0.7071067811865475|
| 1| 0.7071067811865475|
| 2|-0.8320502943378437|
| 2|-0.2773500981126146|
| 2| 1.1094003924504583|
+---+-------------------+

四,pivot()函数

从当前的DataFrame种透视一列,并执行指定的聚合操作。

pivot(pivot_col, values=None)

参数注释:

  • pivot_col:指定用于透视的列
  • values:被旋转为列的值列表,该参数如果为None,表示旋转列的所有值。

举个例子,按照year进行分组,把course列种的值透视为列,并计算earnings列的累加值:

df4.groupBy("year").pivot("course", ["dotNET", "Java"]).sum("earnings").collect()
#[Row(year=2012, dotNET=15000, Java=20000), Row(year=2013, dotNET=48000, Java=30000)] df4.groupBy("year").pivot("course").sum("earnings").collect()
#[Row(year=2012, Java=20000, dotNET=15000), Row(year=2013, Java=30000, dotNET=48000)]

窗口函数

用于定义DataFrame的窗口,并对窗口进行计算。在进行窗口移动值,窗口的当前行(currentRow)的位置是0,如果position小于0,表示在当前行之前,如果position大于0,表示在当前行之后。

Window的位置属性:

  • Window.unboundedPreceding:窗口的第一行
  • Window.unboundedFollowing:窗口的最后一行
  • Window.currentRow:窗口的当前行

通过窗口函数来创建窗口:

  • partitionBy(*cols):分区
  • orderBy(*cols):排序
  • rangeBetween(start, end):start和end是相对于current row的位置,
  • rowsBetween(start, end):start和end是相对于current row的位置,

举个例子,利用这四个函数来创建窗口:

# ORDER BY date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
window = Window.orderBy("date").rowsBetween(Window.unboundedPreceding, Window.currentRow) # PARTITION BY country ORDER BY date RANGE BETWEEN 3 PRECEDING AND 3 FOLLOWING
window = Window.orderBy("date").partitionBy("country").rangeBetween(-3, 3)

参考文档:

pyspark.sql module

Databricks 第四篇:分组统计和窗口的更多相关文章

  1. 第四篇 Entity Framework Plus 之 Batch Operations

    用 Entity Framework  进行 增,删,改.都是基于Model进行的,且Model都是有状态追踪的.这样Entity Framework才能正常增,删,改. 有时候,要根据某个字段,批量 ...

  2. 第十四篇 Integration Services:项目转换

    本篇文章是Integration Services系列的第十四篇,详细内容请参考原文. 简介在前一篇,我们查看了SSIS变量,变量配置和表达式管理动态值.在这一篇,我们使用SQL Server数据商业 ...

  3. 第四篇 Replication:事务复制-订阅服务器

    本篇文章是SQL Server Replication系列的第四篇,详细内容请参考原文. 订阅服务器就是复制发布项目的所有变更将传送到的服务器.每一个发布需要至少一个订阅,但是一个发布可以有多个订阅. ...

  4. 第四篇 Integration Services:增量加载-Updating Rows

    本篇文章是Integration Services系列的第四篇,详细内容请参考原文. 回顾增量加载记住,在SSIS增量加载有三个使用案例:1.New rows-add rows to the dest ...

  5. 【译】第十四篇 Integration Services:项目转换

    本篇文章是Integration Services系列的第十四篇,详细内容请参考原文. 简介在前一篇,我们查看了SSIS变量,变量配置和表达式管理动态值.在这一篇,我们使用SQL Server数据商业 ...

  6. 【译】第四篇 Replication:事务复制-订阅服务器

    本篇文章是SQL Server Replication系列的第四篇,详细内容请参考原文. 订阅服务器就是复制发布项目的所有变更将传送到的服务器.每一个发布需要至少一个订阅,但是一个发布可以有多个订阅. ...

  7. 【译】第四篇 Integration Services:增量加载-Updating Rows

    本篇文章是Integration Services系列的第四篇,详细内容请参考原文. 回顾增量加载记住,在SSIS增量加载有三个使用案例:1.New rows-add rows to the dest ...

  8. WEB安全番外第四篇--关于SQL盲注

    一.SQL盲注: 看不到回显的,无法从返回直接读取到数据库内容的对数据的猜解,属于盲注. 二.第一种--基于布尔类型的盲注: 这种很简单,最典型的例子,就是挖SQL注入的时候常用的: ''' http ...

  9. 跟我学SpringCloud | 第四篇:熔断器Hystrix

    跟我学SpringCloud | 第四篇:熔断器Hystrix 1. 熔断器 服务雪崩 在正常的微服务架构体系下,一个业务很少有只需要调用一个服务就可以返回数据的情况,这种比较常见的是出现在demo中 ...

随机推荐

  1. 6种css3 transform图片悬停动态效果

    html骨架代码 <!DOCTYPE html> <html> <head lang="en"> <meta charset=" ...

  2. Day4 Scrum 冲刺博客

    线上会议: 昨天已完成的工作与今天计划完成的工作及工作中遇到的困难: 成员姓名 昨天完成工作 今天计划完成的工作 工作中遇到的困难 纪昂学 创建一个Tetromino类来作为7个经典形状的父类 绘制下 ...

  3. filereader 和 window.URL.createObjectURL

    <template> <div class="file-preview"> <h4>前端图片预览之 filereader 和 window.UR ...

  4. 【题解】Railway [Uva10263]

    [题解]Railway [Uva10263] 传送门:\(\text{Railway [Uva10263]}\) [题目描述] 给出点 \(M\) 以及一个由 \(n\) 条线段依次相连的类曲形图(由 ...

  5. 【题解】NOI 系列题解总集

    每次做一道 NOI 系列的估计都很激动吧,对于我这种萌新来说( P1731 [NOI1999]生日蛋糕 练习剪枝技巧,关于剪枝,欢迎看我的垃圾无意义笔记 这道题是有一定难度的,需要运用各种高科技剪枝( ...

  6. AcWing 309. 装饰围栏

    题目链接 这道题与下一章的数位\(dp\)解题思路十分一致. 把寻找答案变成按位(并且是字典序从小到大)枚举当前这一位可以填的情况. 通过\(dp\)预处理的信息告诉我们可行性,就可以把答案紧逼到一个 ...

  7. 【java】JSON.toJSONString 空对象也可以转化为JSON字符串

    <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifac ...

  8. 华为云亮相QCon2020深圳站,带你体会大厂的云原生玩法与秘诀

    摘要:在QCon全球软件开发大会上,华为云开发者生态总监张全文作为"云原生应用开发实践"专题出品人,携手华为云四位资深技术专家带来精彩分享. 作为当下技术领域最火热的技术趋势之一, ...

  9. HBuilder云端打包+个推

    1.个推上登记应用. 应用名称和应用标识,在HBuilder的云端打包配置中获取. 应用证书:必需要有苹果开发者账号,并且加入了"iOS Developer Program".加入 ...

  10. git 常用命令--超实用

    git命令行常用操作 1.配置ssh key git config --global user.name 'git用户名' git config --global user.email '邮箱地址' ...