拉格朗日乘子法

\[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_3 = 2
\]
\[min \quad f = 2x_1^2+3x_2^2+7x_3^2 +\alpha _1(2x_1+x_2- 1)+\alpha _2(2x_2+3x_3 - 2)
\]
\[\dfrac{\partial f}{\partial x_1}=4x_1+2\alpha_1=0\Rightarrow x_1=-0.5\alpha_1 \\ \dfrac{\partial f}{\partial x_2}=6x_2+\alpha_1+2\alpha_2=0\Rightarrow x_2=-\dfrac{\alpha_1+2\alpha_2}{6} \\ \dfrac{\partial f}{\partial x_3}=14x_3+3\alpha_2=0\Rightarrow x_3=-\dfrac{3\alpha_2}{14}
\]

KKT条件

\[min \quad f = x_1^2-2x_1+1+x_2^2+4x_2+4 \\s.t. \quad x_1+10x_2 > 10 \\ \quad \quad \quad 10 x_1-10x_2 < 10
\]
\[s.t. \quad 10-x_1-10x_2 <0 \\ \quad \quad \quad 10x_1-x_2 - 10<0
\]
\[L(x,\alpha) = f(x) + \alpha_1g1(x)+\alpha_2g2(x)\\ =x_1^2-2x_1+1+x_2^2+4x_2+4+ \alpha_1(10-x_1-10x_2 ) +\\\alpha_2(10x_1-x_2 - 10)
\]

\[L(x,\alpha,\beta) = f(x) + \sum\alpha_ih_i(x)+\sum\beta_ig_i(x)
\]

(1) L对各个x求导为零;

(2) h(x)=0;

(3) \( \beta_ig_i(x)=0 \)

\[min \quad f = x_1^2-2x_1+1+x_2^2+4x_2+4 \\s.t. \quad 10-x_1-10x_2 <0 \\ \quad \quad \quad 10x_1-x_2 - 10<0
\]
\[L(x,\alpha)= x_1^2-2x_1+1+x_2^2+4x_2+4+\\\alpha_1(10-x_1-10x_2)+\alpha_2(10x_1-x_2 - 10)
\]
\[\dfrac{\partial L}{\partial x_1}=2x_1-2-\alpha_1+10\alpha_2=0\Rightarrow x_1=0.5(\alpha_1-10\alpha_2+2) \\ \dfrac{\partial L}{\partial x_2}=2x_2+4-10\alpha_1-\alpha_2=0\Rightarrow x_2=0.5(10\alpha_1+\alpha_2-4)
\]
\[\alpha_1*g_1(x)=\alpha_1*(10-x_1-10x_2)=0\\\alpha_2*g_2(x)=\alpha_2*(10x_1-x_2 - 10)=0
\]
\[α1=58/101,α2=4/101
\]
\[x1=110/101=1.08;x2=90/101=0.89
\]

拉格朗日乘子法与KKT条件的更多相关文章

  1. 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题

    参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...

  2. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

  3. 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

    目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...

  4. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  5. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  6. 约束优化方法之拉格朗日乘子法与KKT条件

    引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...

  7. 【365】拉格朗日乘子法与KKT条件说明

    参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 ...

  8. 拉格朗日乘子法以及KKT条件

    拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题.他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题. 其中,利用拉格朗日乘子法 ...

  9. 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

    1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...

随机推荐

  1. 跟我一起学.NetCore之中间件(Middleware)应用和自定义

    前言 Asp.NetCore中的请求管道是通过一系列的中间件组成的,使得请求会根据需求进行对应的过滤和加工处理.在平时开发中会时常引用别人定义好的中间件,只需简单进行app.Usexxx就能完成中间件 ...

  2. Activiti7 绑定业务主键以及流程定义 流程实例的挂起和激活

    绑定业务主键businessKey /** * 绑定业务主键 */ @Test public void bindingBusinessKey() { // 获取RuntimeService Runti ...

  3. Solon详解(二)- Solon的核心

    Solon详解系列文章: Solon详解(一)- 快速入门 Solon详解(二)- Solon的核心 Solon详解(三)- Solon的web开发 Solon详解(四)- Solon的事务传播机制 ...

  4. 转发请求RequestDispatcher()方法用于与页面的交互

    jsp1代码 <form action="HelloServlet" > 账号: <input type="text" name=" ...

  5. A Funny Game(POJ 2484)

    原题如下: A Funny Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7108   Accepted: 446 ...

  6. php中用面向对象的思想编写mysql数据库操作类

    最近刚入门完mysql,正好学了一阵子php就想着如何把mysql的表信息用php打印页面上.现在就把代码贴出来,以便小伙伴们参考. 先是建立mysql连接: /*建立连接*/ class datab ...

  7. SSM获取SqlSessionFactory

    1.实现类获取session //根据id 修改阈值 public int altThers(threshold threshold) { SqlSessionFactoryBuilder build ...

  8. C语言的运算符

    操作数 :参与运算的变量 表达式:有意义有结果的语句 运算符的分类:1.按照功能运算符划分:算术运算符 关系运算符 逻辑运算符 位运算 2.按照参与运算的操作数个数划分:单目运算(只有一个操作数) 双 ...

  9. k8s控制器资源

    k8s控制器资源   Pod pod在之前说过,pod是kubernetes集群中是最小的调度单元,pod中可以运行多个容器,而node又可以包含多个pod,关系如下图: 在对pod的用法进行说明之前 ...

  10. vue-router-next 通过hash模式访问页面不生效,直接刷新页面一直停留在根路由界面的解决办法

    vue3中,配合的vueRouter版本更改为vue-router-next通过 npm i vue-router@next 的方式进行引入添加,随后创建 router.js,在main.js里面引入 ...