【题解】[SDOI2016]征途
题目大意:给定序列,将它划分为\(m\)段使得方差最小,输出\(s^2*m^2\)(一个整数)。
\(\text{Solution:}\)
这题我通过题解中的大佬博客学到了一般化方差柿子的写法。
下面来推柿子:
\]
\]
化简得到:
\]
两边乘以\(n^2\)得到:
\]
其中\(sum\)是前缀和。最后这个柿子里面,\(n,sum\)都是常数,最终要处理的就是\(\sum_{i=1}^n x_i^2\).
设\(dp[i][l]\)表示前\(i\)个元素划分\(l\)次的最小平方和,有:
\]
\]
\]
\]
最终目的最小化\(dp[i][l]\)这里就是最小化\(b\),观察到\(2sum[i]\)这个斜率单调递增,所以我们维护所有大于这个斜率的决策点,做到\(O(n).\)
对于这个题,还可以滚动数组优化,虽然这里不需要。
几个实现细节:前\(i\)个元素可以划分成\(i\)段,所以每次枚举起点,它的决策起点应该是划分段数\(-1\),开始应该是划分段数对应的元素数。因为再往前往后都会导致不合法。
写\(\text{slope}\)的时候最好用\(\text{long double}\).顺序不要搞反。当然这个题主要难点是推方差柿子……\(\text{WCSL.}\)
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m,a[20010],sum[20010];
int dp[4000][4000],tail,head;
int q[200010];
int X(int x){return sum[x];}
int Y(int x,int p){return dp[x][p-1]+sum[x]*sum[x];}
long double slope(int x,int y,int p){return (long double)(Y(y,p)-Y(x,p))/(X(y)-X(x));}
//dp[i][l]=dp[j][l-1]+(sum[i]-sum[j])^2
signed main(){
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)scanf("%lld",&a[i]),sum[i]=sum[i-1]+a[i],dp[i][1]=sum[i]*sum[i];
for(int p=2;p<=m;p++){
head=tail=1;
q[head]=p-1;
for(int i=p;i<=n;++i){
while(head<tail&&slope(q[head],q[head+1],p)<2.0*sum[i])head++;
dp[i][p]=dp[q[head]][p-1]+(sum[i]-sum[q[head]])*(sum[i]-sum[q[head]]);
while(head<tail&&slope(q[tail-1],q[tail],p)>slope(q[tail-1],i,p))tail--;
q[++tail]=i;
}
}
printf("%lld\n",m*dp[n][m]-sum[n]*sum[n]);
return 0;
}
附上推柿子时\(\text{word}\)上的东西:
\(Dp[i][l]=dp[j][l-1]+(sum[i]-sum[j])^2\)
\(Dp[i]][l]=dp[j][l-1]+sum[i]^2+sum[j]^2-2sum[i]sum[j]\)
\(Dp[j][l-1]+sum[j]^2=2sum[i]sum[j]+dp[i][l]-sum[i]^2\)
\(Y=dp[j][l-1]+sum[j]^2,k=2sum[i],x=sum[j],b=dp[i][l]-sum[i]^2\)
最小化\(b\),即可
\(Ans=-sum[n]^2+m*dp[n][m]\)
【题解】[SDOI2016]征途的更多相关文章
- 题解-[SDOI2016]征途
[SDOI2016]征途 [SDOI2016]征途 给定长度为 \(n\) 的序列 \(a\{n\}\),将其分为连续 \(m\) 段,和分别为 \(v\{m\}\).\(v\{m\}\) 的方差为 ...
- 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途
斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ; 1<=j<i (O(n^2)暴力)这样一个式子,首 ...
- 【BZOJ4518】[Sdoi2016]征途 斜率优化
[BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 532 Solved: 337[Submit][Status][ ...
- BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]
4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...
- bzoj4518[Sdoi2016]征途 斜率优化dp
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1657 Solved: 915[Submit][Status] ...
- BZOJ_4518_[Sdoi2016]征途_斜率优化
BZOJ_4518_[Sdoi2016]征途_斜率优化 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到 ...
- luoguP4072 [SDOI2016]征途
[SDOI2016]征途 大体 大概就是推推公式,发现很傻逼的\(n^3\)DP get60 进一步我们发现状态不能入手,考虑优化转移 套个斜率优化板子 每一层转移来一次斜率优化 思路 先便便式子 \ ...
- BZOJ4518 Sdoi2016 征途 【斜率优化DP】 *
BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m ...
随机推荐
- 最佳实践:Pulsar 为批流处理提供融合存储
非常荣幸有机会和大家分享一下 Apache Pulsar 怎样为批流处理提供融合的存储.希望今天的分享对做大数据处理的同学能有帮助和启发. 这次分享,主要分为四个部分: 介绍与其他消息系统相比, Ap ...
- Java 的八种排序算法
Java 的八种排序算法 这个世界,需要遗忘的太多. 背景:工作三年,算法一问三不知. 一.八种排序算法 直接插入排序.希尔排序.简单选择排序.堆排序.冒泡排序.快速排序.归并排序和基数排序. 二.算 ...
- Android Studio从Eclipse导项目
要是你只下了Android Studio 就不能用Eclipse导出gradle项目了 可以直接使用Android Studio导入模块,在Android Studio里Project算Eclipse ...
- 【Webpack】NodeJS + Webpack
目的:想要通过npm命令按照我们的规则生成静态资源(webpack4以后还能做到很多性能优化的配置,我所知道的只有css.js分包,以达到资源快速加载快速呈现的效果). 一.安装webpack npm ...
- [BUUOJ记录] [GYCTF]EasyThinking
主要考察ThinkPHP6.0的一个任意文件写入的CVE以及突破disable_function的方法. ThinkPHP6.0.0任意文件操作漏洞 理论分析 进入题目是一个简单的操作页面,dirma ...
- Java的安装和配置
1. 下载JDK 前往甲骨文官网(https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html)下载JDK,这里 ...
- 08_Python的数据类型
1.数字(整型int 浮点型float 复数complex) 1.数字概述 不可变类型,一旦创建不可修改,不是迭代对象,属于原子型 2.整型数int 概述: 整型数是不带有小数部分的数字,包括自然数, ...
- 跟着尚硅谷系统学习Docker-【day04】
day04-20200716 p18.docker容器数据卷 docker容器中的数据,做持久化. 容器关闭以后容器内的数据就没有了. 保存到数据库或者服务器宿主机里面. 作用:容器间可以 ...
- SqlAnalyzer1.01 源码
源码下载:https://files.cnblogs.com/files/heyang78/SqlAnalyzer-20200529-2.rar 现有功能:不带函数允许嵌套的select ...fro ...
- vueJs 安装
1.下载nodeJs 可前往 https://www.cnblogs.com/takeyblogs/p/13600124.html 这里下载 2.由于 npm 安装速度慢,本教程使用了淘宝的镜像及其命 ...