[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks


本文结构

  1. 解决问题
  2. 主要贡献
  3. 算法原理
  4. 参考文献

(1) 解决问题

解决异构网络上的节点嵌入问题。 论文中指出了异构网络嵌入的两个关键问题:

  • 在异构网络中,如何定义和建模节点邻域的概念?
  • 如何优化嵌入模型,使得其能够有效的保留多种类型的节点和边的结构和语义信息。

(2) 主要贡献

Contribution 1: 定义了异构网络表示学习的问题,总结了异构网络嵌入所带来的挑战。

Contribution 2: 提出两个快速且有效的框架,metapath2vec和metapath2vec++,能够保留异构网络中的结构和语义联系。

Contribution 3:

证明了所提的两个模型能够挖掘到异构网络中不同类型节点的语义联系(现有方法无法识别的)。


(3) 算法原理

以下以一个学术网络为例:

1. metapath2vec 模型

主要框架(类似于DeepWalk):基于元路径的随机游走 + 异构Skip-Gram

  • 异构 Skip-Gram

    和一般的Skip-Gram模型类似,,异构Skip-Gram的网络结构如上图所示,其目标是最大化节点和其异构上下文邻居的共现概率。目标函数如下,和一般的Skip-Gram模型的主要区别在于中间那个求和符号,分别对节点与其异构邻居的关系进行建模。

    细节不再过多介绍,可以参考DeepWalk

  • 基于元路径的随机游走

    元路径简单来说是节点类型的序列,用于表达不同节点类型之间或者相同节点类型之间的某种联系,比如 “APVPA”就是一个元路径,表达的是两个作者在某个期刊或者会议上都发表了论文,(A是作者节点类型,P是论文节点类型,V是期刊或者会议节点类型)。一般来说,元路径是事先由先验知识给定的。而基于元路径的随机游走指的是 “下一跳节点的节点类型由当前节点类型和元路径模式确定,按照元路径的指导选择相应的节点类型进行跳转,如果有多个相同节点类型的邻居,则随机选择一个。” 元路径通常设计成一种对称的方式,即他的第一个节点类型和最后一个节点类型要一致,如“APVPA”,这可以重复循环使用指导随机游走。基于元路径的随机游走策略能够捕获不同节点类型之间的联系,并且确保不同类型节点的语义联系可以合理的融合到skip-gram模型中

2. metapath2vec++ 模型

metapath2vec的异构Skip-Gram根据节点类型区分了节点的不同上下文节点,从而再嵌入过程中重构他的邻域,然而,他在softmax层中忽略了节点的类型信息。换句话说,给定节点v,为了推断其邻域中特定类型的上下文节点,metapath2vec实际上允许所有类型的节点作为其负样本。基于上述问题,作者进一步提出metapath2vec++框架,metapath2vec++框架与metapath2vec框架基本一致,只是softmax函数不再由网络中所有节点来做归一化,而只是取与中心节点同类型的网络中所有节点的来做归一化。用了这个策略之后,skip-gram的输出从一个多项式分布变成了同类型概率的多个多项式分布了,其网络结构如下图所示。


(4) 参考文献

Dong Y, Chawla N V, Swami A. metapath2vec: Scalable representation learning for heterogeneous networks[A]. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining[C]. 2017: 135–144.


[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks的更多相关文章

  1. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  2. [论文阅读笔记] node2vec Scalable Feature Learning for Networks

    [论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...

  3. [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding

    [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...

  4. 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)

    今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...

  5. 论文阅读笔记二十三:Learning to Segment Instances in Videos with Spatial Propagation Network(CVPR2017)

    论文源址:https://arxiv.org/abs/1709.04609 摘要 该文提出了基于深度学习的实例分割框架,主要分为三步,(1)训练一个基于ResNet-101的通用模型,用于分割图像中的 ...

  6. 论文阅读笔记四十一:Very Deep Convolutional Networks For Large-Scale Image Recongnition(VGG ICLR2015)

    论文原址:https://arxiv.org/abs/1409.1556 代码原址:https://github.com/machrisaa/tensorflow-vgg 摘要 本文主要分析卷积网络的 ...

  7. 论文阅读笔记三十八:Deformable Convolutional Networks(ECCV2017)

    论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络 ...

  8. 论文阅读笔记六十五:Enhanced Deep Residual Networks for Single Image Super-Resolution(CVPR2017)

    论文原址:https://arxiv.org/abs/1707.02921 代码: https://github.com/LimBee/NTIRE2017 摘要 以DNN进行超分辨的研究比较流行,其中 ...

  9. [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding

    [论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...

随机推荐

  1. MFC二进制文件读取

    1.mfc Document-vew doc类中读取 doc类中读取,在Vew类中可直接使用. 在菜单栏NewFile/OpenFile 后,系统自动调用Serialize()函数 if :写入文件 ...

  2. FlashCache初体验

    注意: 测试用的是CentOS6.5 内核版本2.6.32-431.el6.x86_64 步骤: 上传CentOS6.5做本地yum源,安装以下包. yum install gcc yum insta ...

  3. Redis分布式锁—Redisson+RLock可重入锁实现篇

    前言 平时的工作中,由于生产环境中的项目是需要部署在多台服务器中的,所以经常会面临解决分布式场景下数据一致性的问题,那么就需要引入分布式锁来解决这一问题. 针对分布式锁的实现,目前比较常用的就如下几种 ...

  4. 【GDKOI2014】JZOJ2020年8月13日提高组T4 内存分配

    [GDKOI2014]JZOJ2020年8月13日提高组T4 内存分配 题目 Description Input Output 输出m行,每行一个整数,代表输入中每次程序变化后系统所需要的空闲内存单位 ...

  5. 20200315_python3.6去除标点符号

    line = "python3.6下进行去!@#$%^&*()除标点测试,:!大家好,:!&>啥都不是!@#¥%--&*(-.||" # python ...

  6. 第5.4节 Python函数中的变量及作用域

    一.函数中的变量使用规则 函数执行时,使用的全局空间是调用方的全局空间,参数及函数使用的局部变量存储在函数单独的局部名字空间内: 函数的形参在函数中修改了值时,并不影响调用方本身的数据,但如果形参是一 ...

  7. Python中sorted(iterable, /, *, key=None, reverse=False)的参数中的斜杆是什么意思?

    通过help(sorted)查看sorted的帮助文档,显示如下: Help on built-in function sorted in module builtins: sorted(iterab ...

  8. 开源版本Visifire的应用

    Visifire曾经开源,保持使用开源版本是不会有版权问题滴. 引用的命名控件 using Visifire.Charts; using Visifire.Commons; 一.应用示例主要代码 // ...

  9. [SQL Server]多次为 '派生表' 指定了列 'id'

    问题: 原因: 因为派生表oo中出现了两个同样的'ID'属性,所以会报[多次为 'o' 指定了列 'ID']的错误. 只需要把第二个星号替换成所需要的列名并把重复字段重命名就好了 解决方案:

  10. v-clickoutsides

    //点击目标元素外侧触发特定事件 使用 v-clickoutsides="clickHandler" import Vue from 'vue' Vue.directive('cl ...