VIT Vision Transformer | 先从PyTorch代码了解
- 文章原创自:微信公众号「机器学习炼丹术」
- 作者:炼丹兄
- 联系方式:微信cyx645016617
- 代码来自github
【前言】:看代码的时候,也许会不理解VIT中各种组件的含义,但是这个文章的目的是了解其实现。在之后看论文的时候,可以做到心中有数,而不是一片茫然。
VIT类
初始化
和之前的学习一样,从大模型类开始看起,然后一点一点看小模型类:
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
assert num_patches > MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for attention to be effective (at least 16). Try decreasing your patch size'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
在实际的调用中,是如下调用的:
model = ViT(
dim=128,
image_size=224,
patch_size=32,
num_classes=2,
channels=3,
).to(device)
输入参数讲解:
image_size:图片的大小;patch_size:把图片划分成小的patch,小的patch的尺寸;num_classes:这次分类任务的类别总数;channels:输入图片的通道数。
VIT类中初始化的组件:
num_patches:一个图片划分成多少个patch,因为图片224,patch32,所以划分成7x7=49个patches;patch_dim:3x32x32,理解为一个patch中的元素个数;
......这样展示是不是非常的麻烦,还要上下来回翻看代码,所以我写成注释的形式
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
# image_size=224,patch_size=32,num_classes=2,channels=3,dim=128
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
# num_pathes = (224//32)**2 = 7*7=49
num_patches = (image_size // patch_size) ** 2
# patch_dim = 3*32*32
patch_dim = channels * patch_size ** 2
assert num_patches > MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for attention to be effective (at least 16). Try decreasing your patch size'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
# self.patch_size = 32
self.patch_size = patch_size
# self.pos_embedding是一个形状为(1,50,128)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
# self.patch_to_embedding是一个从3*32*32到128映射的线性层
self.patch_to_embedding = nn.Linear(patch_dim, dim)
# self.cls_token是一个随机初始化的形状为(1,1,128)这样的变量
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
# Transformer后面会讲解
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
forward
现在看VIT的推理过程:
def forward(self, img, mask = None):
# p=32
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x) # x.shape=[b,49,128]
b, n, _ = x.shape # n = 49
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1) # x.shape=[b,50,128]
x += self.pos_embedding[:, :(n + 1)] # x.shape=[b,50,128]
x = self.dropout(x)
x = self.transformer(x, mask) # x.shape=[b,50,128],mask=None
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)
- 这里的代码用到了
from einops import rearrange, repeat,这个库函数,einops是一个库函数,是对张量进行操作的库函数,支持pytorch,TF等。 einops.rearrange是把输入的img,从[b,3,224,224]的形状改成[b,3,7,32,7,32]的形状,通过矩阵的转置换成[b,7,7,32,32,3]的样子,最后合并成[b,49,32x32x3]self.patch_to_embedding,输出的x的形状为[b,49,128];einops.repeat是把self.cls_token从[1,1,128]复制成[b,1,128]
现在,我们知道从patch到embedding是用线性层实现的。
transformer
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout):
# dim=128,depth=12,heads=8,dim_head=64,mlp_dim=128
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
]))
def forward(self, x, mask = None):
for attn, ff in self.layers:
x = attn(x, mask = mask)
x = ff(x)
return x
- self.layers中包含depth组的Attention+FeedForward模块。
- 这里需要记得,输入的x的尺寸为[b,50,128]
Attention
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads # 64 x 8
self.heads = heads # 8
self.scale = dim_head ** -0.5
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads # n=50,h=8
# self.to_qkv(x)得到的尺寸为[b,50,64x8x3],然后chunk成3份
# 也就是说,qkv是一个三元tuple,每一份都是[b,50,64x8]的大小
qkv = self.to_qkv(x).chunk(3, dim = -1)
# 把每一份从[b,50,64x8]变成[b,8,50,64]的形式
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
# 这一步不太好理解,q和k都是[b,8,50,64]的形式,50理解为特征数量,64为特征变量
# dots.shape=[b,8,50,50]
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
# 不考虑mask这一块的内容
mask_value = -torch.finfo(dots.dtype).max
if mask is not None:
mask = F.pad(mask.flatten(1), (1, 0), value = True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
mask = mask[:, None, :] * mask[:, :, None]
dots.masked_fill_(~mask, mask_value)
del mask
# 对[b,8,50,50]的最后一个维度做softmax
attn = dots.softmax(dim=-1)
# 这个attn就是计算出来的自注意力值,和v做点乘,out.shape=[b,8,50,64]
out = torch.einsum('bhij,bhjd->bhid', attn, v)
# out.shape变成[b,50,8x64]
out = rearrange(out, 'b h n d -> b n (h d)')
# out.shape重新变成[b,60,128]
out = self.to_out(out)
return out
综上所属,这个attention其实就是一个自注意力模块,输入的是[b,50,128],返回的也是[b,50,128]。实现的过程因为使用了torch.einsum所以有些复杂,但是总的来说,和我之前讲过的一篇论文"non-local"模块,是完全一样的。torch.einsum和torch.mm原理相同,只是因为torch.mm不支持高纬度的张量做矩阵乘法。
PreNorm
class PreNorm(nn.Module):
def __init__(self, dim, fn):
# dim=128,fn=Attention/FeedForward
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
先对输入的x(x.shape=[b,50,128])做一个layerNormalization层归一化,然后再放到上面的Attention模块中做自注意力。
Residual
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
一个残差模块罢了。
FeedForward
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
# dim=128,hidden_dim=128
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
就是两个线性层,这里有意思的是GELU()激活函数,这个激活函数可以直接使用torch.nn.GELU()调用,回头有机会再好好讲一下GELU()的原理。
transformer总结
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
- 第一个就是,先对输入做layerNormalization,然后放到attention得到attention的结果,然后结果和做layerNormalization之前的输入相加做一个残差链接;
- 第二个就是,x->LayerNormalization->FeedForward线性层->y,然后这个y和输入的x相加,做残差连接。
VIT总结
回顾一下整个流程:
- 一个图片224x224,分成了49个32x32的patch;
- 对这么多的patch做embedding,成49个128向量;
- 再拼接一个cls_tokens,变成50个128向量;
- 再加上pos_embedding,还是50个128向量;
- 这些向量输入到transformer中进行自注意力的特征提取;
- 输出的是50个128向量,然后对这个50个求军职,变成一个128向量;
- 然后线性层把128维变成2维从而完成二分类任务的transformer模型。
问题:我对NLP了解不深入,有没有人可以回答一下这个问题:cls_tokens和pos_embedding的用处是什么?
VIT Vision Transformer | 先从PyTorch代码了解的更多相关文章
- ICCV2021 | 渐进采样式Vision Transformer
前言 ViT通过简单地将图像分割成固定长度的tokens,并使用transformer来学习这些tokens之间的关系.tokens化可能会破坏对象结构,将网格分配给背景等不感兴趣的区域,并引 ...
- ICCV2021 | Tokens-to-Token ViT:在ImageNet上从零训练Vision Transformer
前言 本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从 ...
- 目标检测之Faster-RCNN的pytorch代码详解(数据预处理篇)
首先贴上代码原作者的github:https://github.com/chenyuntc/simple-faster-rcnn-pytorch(非代码作者,博文只解释代码) 今天看完了simple- ...
- ICCV2021 | Vision Transformer中相对位置编码的反思与改进
前言 在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE). ...
- (原)SphereFace及其pytorch代码
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embeddi ...
- (转载)PyTorch代码规范最佳实践和样式指南
A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...
- PyTorch代码调试利器: 自动print每行代码的Tensor信息
本文介绍一个用于 PyTorch 代码的实用工具 TorchSnooper.作者是TorchSnooper的作者,也是PyTorch开发者之一. GitHub 项目地址: https://github ...
- 如何将tensorflow1.x代码改写为pytorch代码(以图注意力网络(GAT)为例)
之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的. 对于图注意力网络还不了解的可以先去看看tensorflow版本的代码, ...
- pointnet.pytorch代码解析
pointnet.pytorch代码解析 代码运行 Training cd utils python train_classification.py --dataset <dataset pat ...
随机推荐
- Redis集群搭建与简单使用【转】
Redis集群搭建与简单使用 安装环境与版本 用两台虚拟机模拟6个节点,一台机器3个节点,创建出3 master.3 salve 环境. redis 采用 redis-3.2.4 版本. 两台虚拟机都 ...
- Nginx集成Naxsi防火墙
前言 因工作原因,接触到了WAF,今天部署了一下Naxsi,记录一下 GitHub 正文 环境 Centos 7 下载 更新yum yum update -y 安装必要依赖 yum install g ...
- Rancher首席架构师解读Fleet:它何以管理百万集群?
作者简介 Darren Shepherd,Rancher Labs联合创始人及首席架构师.在加入Rancher之前,Darren是Citrix的高级首席工程师,他在那里从事CloudStack.Ope ...
- LeetCode557 反转字符串中的单词 III
给定一个字符串,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序. 示例 1: 输入: "Let's take LeetCode contest" 输出: &q ...
- 剑指offer 树的基本操作:四种遍历方式
前序遍历 递归版 编程思想 即借助系统栈,效率较低.二叉树的前序遍历规则:1. 访问根结点: 2. 遍历左子树: 3. 遍历右子树 编程实现 //树的定义 struct TreeNode { int ...
- 剑指Offer58-左转字符串
题目 汇编语言中有一种移位指令叫做循环左移(ROL),现在有个简单的任务,就是用字符串模拟这个指令的运算结果.对于一个给定的字符序列S,请你把其循环左移K位后的序列输出.例如,字符序列S=" ...
- SQL LEN()函数用法
含义: LEN 函数返回文本字段中值的长度. 返回字符表达式中的字符数 SQL LEN() 语法 SELECT LEN(column_name) FROM table_name 举例: 1.LEN对相 ...
- CTFshow萌新赛-密码学签到
查看密码信息 猜测为base家族 存在"^"符号,所以应该是在base64以上 使用base85解密 成功拿到flag
- oracle dataguard搭建
搭建前环境准备 1.查看主库的oracle的uid和gid并在备库创建用户 # 主库查看oracle $ id oracle uid=54321(oracle) gid=54321(oinstall) ...
- PYTHON爬虫实战_垃圾佬闲鱼爬虫转转爬虫数据整合自用二手急速响应捡垃圾平台_3(附源码持续更新)
说明 文章首发于HURUWO的博客小站,本平台做同步备份发布. 如有浏览或访问异常图片加载失败或者相关疑问可前往原博客下评论浏览. 原文链接 PYTHON爬虫实战_垃圾佬闲鱼爬虫转转爬虫数据整合自用二 ...