入门OJ:最短路径树入门
题目描述
n个城市用m条双向公路连接,使得任意两个城市都能直接或间接地连通。其中城市编号为1..n,公路编号为1..m。任意个两个城市间的货物运输会选择最短路径,把这n*(n-1)条最短路径的和记为S。现在你来寻找关键公路r,公路r必须满足:当r堵塞之后,S的值会变大(如果r堵塞后使得城市u和v不可达,则S为无穷大)。
输入格式
第1行包含两个整数n,m,接下来的m行,每行用三个整数描述一条公路a,b,len(1<=a,b<=n),表示城市a和城市b之间的公路长度为len,这些公路依次编号为1..m。
n<=100,1<=m<=3000,1<=len<=10000。
输出格式
从小到大输出关键公路的编号。
先考虑暴力。
显然,对于一个点u,如果删去的边不在它到其它点的最短路上,那么S是不会变的。考虑到两点之间的最短路不止一条,我们可以给每个点先建出一棵最短路径树出来,然后枚举最短路径树上的每条边并把它删掉,再跑一遍最短路,看S是否变大即可。如果最短路用dijkstra+heap来做,这个过程的时间复杂度就是:
\]
也就N^3logN的级别。可以过这题。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#define maxn 101
#define maxm 3001
using namespace std;
vector<int> to[maxn],w[maxn],id[maxn];
int dis[maxn],treeid[maxn];
bool vis[maxn],lzs[maxm];
int n,m;
inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
inline void dijkstra(const int &s,const int &del){
priority_queue< pair<int,int>,vector< pair<int,int> >,greater< pair<int,int> > > q;
memset(vis,false,sizeof vis),memset(dis,0x3f,sizeof dis);
q.push(make_pair(0,s)),dis[s]=0;
while(q.size()){
int u=q.top().second; q.pop();
if(vis[u]) continue; vis[u]=true;
for(register int i=0;i<to[u].size();i++) if(id[u][i]!=del){
int v=to[u][i];
if(dis[v]>dis[u]+w[u][i]){
dis[v]=dis[u]+w[u][i],q.push(make_pair(dis[v],v));
if(!del) treeid[v]=id[u][i];
}
}
}
}
inline void out(int a){
if(a>=10)out(a/10);
putchar(a%10+'0');
}
int main(){
n=read(),m=read();
memset(dis,0x3f,sizeof dis);
for(register int i=1;i<=m;i++){
int u=read(),v=read(),_w=read();
to[u].push_back(v),w[u].push_back(_w),id[u].push_back(i);
to[v].push_back(u),w[v].push_back(_w),id[v].push_back(i);
}
for(register int i=1;i<=n;i++){
dijkstra(i,0);
int sum=0; for(register int j=1;j<=n;j++) sum+=dis[j];
for(register int j=1;j<=n;j++) if(treeid[j]&&!lzs[treeid[j]]){
dijkstra(i,treeid[j]);
int cnt=0; for(register int k=1;k<=n;k++) cnt+=dis[k];
if(cnt>sum) lzs[treeid[j]]=true;
}
}
bool flag=false;
for(register int i=1;i<=m;i++) if(lzs[i]){
out(i),putchar('\n');
}
return 0;
}
入门OJ:最短路径树入门的更多相关文章
- poj 2104 K-th Number (划分树入门 或者 主席树入门)
题意:给n个数,m次询问,每次询问L到R中第k小的数是哪个 算法1:划分树 #include<cstdio> #include<cstring> #include<alg ...
- 主席树入门(区间第k大)
主席树入门 时隔5个月,我又来填主席树的坑了,现在才发现学算法真的要懂了之后,再自己调试,慢慢写出来,如果不懂,就只会按照代码敲,是不会有任何提升的,都不如不照着敲. 所以搞算法一定要弄清原理,和代码 ...
- poj 3841 Double Queue (AVL树入门)
/****************************************************************** 题目: Double Queue(poj 3481) 链接: h ...
- 【入门OJ】2003: [Noip模拟题]寻找羔羊
这里可以复制样例: 样例输入: agnusbgnus 样例输出: 6 这里是链接:[入门OJ]2003: [Noip模拟题]寻找羔羊 这里是题解: 题目是求子串个数,且要求简单去重. 对于一个例子(a ...
- Trie树入门
Trie树入门 貌似很多人会认为\(Trie\)是字符串类型,但是这是数据结构!!!. 详情见度娘 下面开始进入正题. PS:本文章所有代码未经编译,有错误还请大家指出. 引入 先来看一个问题 给 ...
- poj2104 k-th number 主席树入门讲解
poj2104 k-th number 主席树入门讲解 定义:主席树是一种可持久化的线段树 又叫函数式线段树 刚开始学是不是觉得很蒙逼啊 其实我也是 主席树说简单了 就是 保留你每一步操作完成之后 ...
- splay树入门(带3个例题)
splay树入门(带3个例题) 首先声明,本教程的对象是完全没有接触过splay的OIer,大牛请右上角.. PS:若代码有误,请尽快与本人联系,我会尽快改正 首先引入一下splay的概念,他的中文名 ...
- Python入门篇-数据结构树(tree)的遍历
Python入门篇-数据结构树(tree)的遍历 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.遍历 迭代所有元素一遍. 二.树的遍历 对树中所有元素不重复地访问一遍,也称作扫 ...
- Python入门篇-数据结构树(tree)篇
Python入门篇-数据结构树(tree)篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.树概述 1>.树的概念 非线性结构,每个元素可以有多个前躯和后继 树是n(n& ...
随机推荐
- Cookie注入新方法
正常输 and 1=1 会有waf 进行拦截 判断一个网站是否支持cookie注入_> 现在是get ,你可以把参数放在post里面试试看看是否返回正常 用hackbar插件也 ...
- 关于_tostring[php]的另类利用
收获 反序列化tostring的考点不一定要考察调用一个Class,也可以使用echo来进行考察 tostring()方法:在直接输出对象引用的时候,就不会产生错误,而是自动调用了__tostring ...
- Spring Boot GraphQL 实战 01_快速入门
hello,大家好,我是小黑,又和大家见面啦~ 新开一个专题是关于 GraphQL 的相关内容,主要是通过 Spring Boot 来快速开发 GraphQL 应用,希望对刚接触 GraphQL 的同 ...
- 我们是如何实现DevOps的
一.DevOps的理解 DevOps的概念理解 DevOps 的概念在软件开发行业中逐渐流行起来.越来越多的团队希望实现产品的敏捷开发,DevOps 使一切成为可能.有了 DevOps ,团队可以定期 ...
- C#常用的算法
一.二分法 注:一定是有序的数组,才可以使用这种算法,如果数组没有排序则先进行排序后再调用此方法. 二分顾名思义,就是将一组数据对半分开(比如左右两部分,下面用左右数组表示),从中间位置开始查找, 如 ...
- Windows7里面怎么实现FTP服务功能
1.安装FTP服务 点击:计算机 -->属性 --> 控制面板主页 --> 程序 --> 打开或关闭Windows功能 2. 调出管理工具 操作: 鼠标点击工具栏,选择属性,选 ...
- vs2012新特性
VS2012的六大技术特点: 1.VS2012和VS2010相比,最大的新特性莫过于对Windows 8Metro开发的支持.Metro天生为云端而生,简洁.数字化.内容优于形式.强调交互的设计已经成 ...
- ios私钥证书和profile文件的创建方法
做过ios开发的朋友们,对ios私钥证书和profile文件(描述文件)可能并不陌生,可以通过mac电脑来创建,但是,假如我们是用H5开发工具开发的,我们没有mac电脑怎么创建证书呢? 目前H5打包用 ...
- 什么情况下调用doGet()和doPost()?
默认情况是调用doGet()方法,JSP页面中的Form表单的method属性设置为post的时候,调用的为doPost()方法: 为get的时候,调用deGet()方法.
- IDEA中配置Git,在Github上clone项目到IDEA
一.安装git 1.用homebrew安装git 运行以下命令安装 brew install git 默认的安装位置是 /usr/local/Cellar目录中(后面会用到) 二.在idea中配置Gi ...