谈谈C++中的数据对齐
对于C/C++程序员来说,掌握数据对齐是很有必要的,因为只有了解了这个概念,才能知道编译器在什么时候会偷偷的塞入一些字节(padding)到我们的结构体(struct/class),也唯有这样我们才能更好的理解、优化结构体和内存。
几个栗子
看看几个简单的Struct,能猜出他们的SIZE吗?(运行于64Bit win10 vs2017)
struct A
{
char c1;
};
struct B
{
int i1;
};
struct C
{
char c1;
int i1;
};
struct D
{
char c1;
int i1;
char c2;
};
struct E
{
char c1;
char c2;
int i1;
};
int main()
{
std::cout << "A's size is " << sizeof(A) << std::endl;
std::cout << "B's size is " << sizeof(B) << std::endl;
std::cout << "C's size is " << sizeof(C) << std::endl;
std::cout << "D's size is " << sizeof(D) << std::endl;
std::cout << "E's size is " << sizeof(E) << std::endl;
}
先揭晓答案

如果对任何一个结构体的大小有疑问,那么这篇文章非常适合你,请接着往下看,我们会解释数据对齐。
数据对齐
处理器读取数据的行为
在C/C++中,每种数据类型都有对齐的要求(这个更多是处理器的要求而非语言层面),大家都知道,处理器工作的时候需要数据总线(data bus)、控制总线(control bus)和地址总线(address bus)一起配合工作。而在数据总线取数据的时候,处理器为了高效的工作,一次会取4byte或者8byte数据(依系统32bit或者64bit而不同),这就是所谓数据字长(word size)。同时在读取内存的时候,也会从4byte或者8byte边界开始读取,这是处理器行为,我们只能尊重不能改变。考虑下面的例子,
struct F
{
int i1
char c1;
int i2;
char c2;
};
#include <iostream>
int main()
{
F f;
printf("0x%p\n", &f);
}
它的起始地址输出是:
0x000000FE8BCFFB88
所以在内存中可能的排列就是:

读取数据的时候,每次读入8btye,8个字节为一个读取单元,就像蒸笼的一格,这样做的好处是每次可以尽可能多的读入数据,减少读取次数。设想,如果一次只读入一个字节数据,那么一个Int就需要4次读取,明显效率就很低。
编译器的做法
如果没有对齐
了解了处理器如何读取数据的,我们就不难理解编译器为什么会做出调整。试想,如果编译器不在后台做出填充(padding),那么我们就会遇到这种情况

像这样的话,访问i1, c1 都不会有问题,但是访问i2就会发现,数据散落在不同的蒸笼,原本只需要一次读取就行的数据,还需要一次额外的数据读取才行,这就造成了读取数据的低效,在某些严格的CPU,比如ARM上面,这种非对齐的数据读操作甚至会被拒绝。
编译器对齐
所以,为了让数据读取效率最大化,编译器会选择牺牲一部分空间来换取效率,他们不会允许i2横跨两个读取单元。在实际中,上面的结构体会是这样的

可以看出,
- 为了解决i2的对齐问题,c1之后填充了3个空字节
- 同时为了保持整个结构体的对齐(结构体对齐字节数等于其最大的数据成员的对齐字节数,这里是4),在结构体的尾部还会有3个空字节
- 整个结构体的大小就是16字节,有6个字节是空字节。
所以,在编译器的作用下,最开始几个Struct实际上扩展为,
struct A
{
char c1; //no padding
};
struct B
{
int i1; //no padding
};
struct C
{
char c1;
char pad[3]; //padding
int i1;
};
struct D
{
char c1;
char pad1[3]; //padding
int i1;
char c2;
char pad2[3]; //padding
};
struct E
{
char c1;
char c2;
char pad[2]; //padding
int i1;
};
对齐的目的是要让数据访问更高效,一般来说,数据类型的对齐要求和它的长度是一致的,比如,
- char 是 1
- short 是 2
- int 是 4
- double 是 8
这不是巧合,比如short,2对齐保证了short只可能出现在一个读取单元的0, 2, 4, 6格,而不会出现在1, 3, 5, 7格;再比如int,4对齐保证了一个读取单元可以装载2个int——在0或者4格。从根本上杜绝了同一个数据横跨读取单元的问题。
总结
可能有人会疑惑了,知道这些对我们工作有什么帮助吗?如果仅仅是比较High-Level的应用程序编程,可能确实感觉不明显,最多就当成一个知识点了解一下,但是对于搞比较底层开发的,比如游戏引擎,或者是在内存环境很紧张的情况下开发,比如嵌入式开发,那了解这个有助于在某些情况下节约内存。
考虑前面的D和E结构体,他们拥有完全一样的成员,却有着不同的结构体大小,就是因为E选择把对齐要求接近的变量类型放在一起,减小了填充padding的数量从而达到了减小结构体大小的目的。
在设计结构体的时候,这个可以作为一个考量,有一些函数可以帮助我们查看某个类型的对齐要求,比如Visual Studio中的__alignof函数。
这就是关于数据对齐的一些基础知识,希望能帮助大家解惑,如果您发现本文有任何写的不对的地方,欢迎留言指出来;如果有其他问题,也欢迎留言一起讨论。
谈谈C++中的数据对齐的更多相关文章
- 【C/C++开发】内存对齐(内存中的数据对齐)、大端模式及小端模式
数据对齐,是指数据所在的内存地址必须是该数据长度的整数倍.DWORD数据的内存起始地址能被4除尽,WORD数据的内存起始地址能被2除尽.X86 CPU能直接访问对齐的数据,当它试图访问一个未对齐的数据 ...
- Ultra Edit中的数据对齐
有时会用到Ultra Edit的数据对齐功能.比如,要求64个符号一组,从低位开始对齐.这时,如果数据长度不是一行长度的整数, 就会产生高位对齐.低位不足的问题.为了调整,往往需要逐行调整,很不方便. ...
- C++中数据对齐问题。struct、union、enum,类继承。再谈sizeof()
首先是struct,在C++中,结构体其实和class有很大的相似了.但是有一点不同的是,struct默认是public,而class中是private. 当然,struct继承等用法也是可以的. 共 ...
- C++中数据对齐
大体看了看数据对齐,不知道是否正确,总结如下: struct A { char name; double dHeight; int age; }; sizeof(A) = (1+7+8+4+4) = ...
- gcc数据对齐之: howto 2.
原文链接:http://www.catb.org/esr/structure-packing/ 谁应阅读本文 本文探讨如何通过手工重新打包C结构体声明,来减小内存空间占用.你需要掌握基本的C语言知识, ...
- DataTable to Excel(使用NPOI、EPPlus将数据表中的数据读取到excel格式内存中)
/// <summary> /// DataTable to Excel(将数据表中的数据读取到excel格式内存中) /// </summary> /// <param ...
- 浅谈Oracle中物理结构(数据文件等。。。)与逻辑结构(表空间等。。。。。)
初始Oracle时很难理解其中的物理结构和逻辑结构,不明白内存中和硬盘中文件的区别和联系,我也是初学Oracle,这里就简单的谈谈我我看法. 首先,你需要明白的一点是:数据库的物理结构是由数据库的操作 ...
- c#.net循环将DataGridView中的数据赋值到Excel中,并设置样式
Microsoft.Office.Interop.Excel.Application excel = new Microsoft.Office.Interop.Excel ...
- ligerui_实际项目_003:form中添加数据,表格(grid)里面显示,最后将表格(grid)里的数据提交到servlet
实现效果: "Form"中填写数据,向本页"Grid"中添加数据,转换成Json数据提交,计算总和,Grid文本框可编辑,排序 图片效果: 总结: //disp ...
随机推荐
- 牛客网多校第9场 E Music Game 【思维+数学期望】
题目:戳这里 题意:鼠标点击n下,第i次点击成功的概率为p[i],连续点击成功x次可以获得x^m分,求n次点击总分数的数学期望. 解题思路:数学期望的题很多都需要转化思维,求某一个单独状态对整体答案的 ...
- codeforces 1045I Palindrome Pairs 【stl+构造】
题目:戳这里 题意:给1e5个字符串,问有多少对字符串组合,满足最多只有一种字符有奇数个. 解题思路:每种情况用map存一下就行了.感觉这题自己的代码思路比较清晰,所以写个题解记录一下 附ac代码: ...
- Lightoj 1038 - Race to 1 Again【期望+dp】
题目:戳这里 题意:一个数字n不断迭代地除以自身的因子得到1.求这个过程中操作除法次数的期望. 解题思路: 求概率基本都是从一个最基础的状态开始延伸推出公式,得出答案.因为每个数都有个共同的最终状态1 ...
- Leetcode(712)-账户合并
给定一个列表 accounts,每个元素 accounts[i] 是一个字符串列表,其中第一个元素 accounts[i][0] 是 名称 (name),其余元素是 emails 表示该帐户的邮箱地址 ...
- 深入理解gradle中的task
目录 简介 定义task tasks 集合类 Task 之间的依赖 定义task之间的顺序 给task一些描述 task的条件执行 task rule Finalizer tasks 总结 深入理解g ...
- Web 前端如何一键开启上帝模式
Web 前端如何一键开启上帝模式 God Mode document.designMode = `on`; refs https://www.cnblogs.com/xgqfrms/tag/desig ...
- 微信公众号代码高亮美化工具 All In One
微信公众号代码高亮美化工具 All In One markdown 美化 mdnice 编辑器 https://www.mdnice.com/ https://github.com/mdnice ma ...
- LeetCode 数组分割
LeetCode 数组分割 LeetCode 数组怎么分割可以得到左右最大值的差值的最大 https://www.nowcoder.com/study/live/489/1/1 左右最值最大差 htt ...
- Flutter & Scaffold & multiple floatingActionButton
Flutter & Scaffold & multiple floatingActionButton demo import 'package:flutter/material.dar ...
- vue3 deep dive
vue3 deep dive vue core vnode vue core render / mount / patch refs https://www.vuemastery.com/course ...