感知机
原理:二维空间中找到一条直线可以把所有二元类别分离开,三维或多维空间中,找到一个分离超平面把所有二元类别分离开。而可把所有二元类别分离开的超平面不止一个,哪个是最好的呢?
损失函数:所有误分类的点到超平面的总距离,找到损失函数最优化对应的超平面,即误分类的点到超平面总距离最小的模型参数w,b(感知机模型)
超平面定义
          wTx+b=0 w超平面法向量,b超平面截距
感知机和SVM的区别:

感知机目标找到一个超平面将各样本尽可能分离正确(有无数个);SVM目标找到一个超平面不仅将各样本尽可能分离正确,还要使各样本离超平面距离最远(只有一个),SVM的泛化能力更强

SVM(Support Vector Machine)

1.线性可分支持向量机(Hard-Margin SVM-硬间隔最大化模型):要求所有点都正确划分的基础上,找到间隔最大的分离超平面
2.线性支持向量机(Soft-Margin SVM-软间隔最大化模型):相对与硬间隔模型放宽了限制,引入了松弛变量,使得分类器具有一定的容错性,容许有一些误分类的点
3.线性不可分支持向量机(核函数):对于线性不可分问题将样本从原始空间通过核函数映射到高维空间实行“线性可分”

感知机的目标就是找到一个分割平面,使得尽量得区分正确(如下图)

SVM的目标是找到一个分割平面,不仅区分正确,而且要让正负样本尽量远离这个分割平面

下图里面,H2就是感知机的(不一定唯一),H3就是SVM的。

感知机vs支持向量机的更多相关文章

  1. 【python与机器学习实战】感知机和支持向量机学习笔记(一)

    对<Python与机器学习实战>一书阅读的记录,对于一些难以理解的地方查阅了资料辅以理解并补充和记录,重新梳理一下感知机和SVM的算法原理,加深记忆. 1.感知机 感知机的基本概念 感知机 ...

  2. 感知机与支持向量机 (SVM)

    感知机与SVM一样都是使用超平面对空间线性可分的向量进行分类,不同的是:感知机的目标是尽可能将所有样本分类正确,这种策略指导下得出的超平面可能有无数个,然而SVM不仅需要将样本分类正确,还需要最大化最 ...

  3. 【Python机器学习实战】感知机和支持向量机学习笔记(三)之SVM的实现

    前面已经对感知机和SVM进行了简要的概述,本节是SVM算法的实现过程用于辅助理解SVM算法的具体内容,然后借助sklearn对SVM工具包进行实现. SVM算法的核心是SMO算法的实现,首先对SMO算 ...

  4. 机器学习之十一问支持向量机(SVM)

    推导了支持向量机的数学公式后,还需要对比和总结才能更深入地理解这个模型,所以整理了十一个关于支持向量机的问题. 第一问:支持向量机和感知机(Perceptron)的联系? 1.相同点: 都是一种属于监 ...

  5. 机器学习之支持向量机(Support Vector Machine)

    转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是 ...

  6. 感知机:Perceptron Learning Algorithm

    感知机是支持向量机SVM和神经网络的基础 f = sign(wx+b) 这样看起来好像是LR是差不多的,LR是用的sigmoid函数,PLA是用的sign符号函数,两者都是线性分类器,主要的差别在于策 ...

  7. 机器学习——支持向量机SVM

    前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型, ...

  8. 不平衡数据下的机器学习方法简介 imbalanced time series classification

    imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...

  9. 《AI算法工程师手册》

    本文转载自:http://www.huaxiaozhuan.com/ 这是一份机器学习算法和技能的学习手册,可以作为学习工作的参考,都看一遍应该能收获满满吧. 作者华校专,曾任阿里巴巴资深算法工程师, ...

随机推荐

  1. Spring学习(二)Spring IoC 和 DI 简介

    一.IOC(控制反转) 定义:反转控制 (Inversion Of Control)的缩写,即创建对象的反转控制. 正向控制:若要使用某个对象,需要自己去负责对象的创建. 反向控制:若要使用某个对象, ...

  2. ARM架构下的Docker环境,OpenJDK官方没有8版本镜像,如何完美解决?

    为什么需要ARM架构下的OpenJDK8的Docker镜像? 对现有的Java应用,之前一直运行在x86处理器环境下,编译和运行都是JDK8,如今在树莓派的Docker环境运行(或者其他ARM架构电脑 ...

  3. 小伙伴想学Jenkins自动构建发布项目,我:安排上了!!

    写在前面 趁着十一长假,很多小伙伴都在悄悄学习,有些是为了能够顺利通过面试,进入大厂升职加薪.有些则是为了进一步巩固和提高自己的专业技能,希望有朝一日能过成为互联网架构师乃至技术专家.这不,就有小伙伴 ...

  4. 请编写sql多语句表值函数统,计指定年份中每本书的销售总额

    create table 图书表( 书号 varchar(50), 书名 varchar(50), 单价 int ) create table 销售表( 书号 varchar(50), 销售时间 da ...

  5. 搭建go-stress-testing压力测试

    参考地址:https://github.com/link1st/go-stress-testing安装golang环境 yum install -y golang 下载软件包 wget -q http ...

  6. Hadoop框架:NameNode工作机制详解

    本文源码:GitHub·点这里 || GitEE·点这里 一.存储机制 1.基础描述 NameNode运行时元数据需要存放在内存中,同时在磁盘中备份元数据的fsImage,当元数据有更新或者添加元数据 ...

  7. Oracle - ascii为0的陷阱

    一.概述 ascii0是个空字符,如果将这个字符插入到oracle数据库中会是什么现象,是null吗? 二.正式实验 创建一张测试表 create table test(id int, name va ...

  8. JAVA基础 随机点名器案例

    1.1      案例介绍 随机点名器,即在全班同学中随机的找出一名同学,打印这名同学的个人信息. 此案例在我们昨天课程学习中,已经介绍,现在我们要做的是对原有的案例进行升级,使用新的技术来实现. 我 ...

  9. 多测师讲解 _接口自动化框架设计_高级讲师肖sir

    背景:因为把传入接口参数.组建测试用例.执行测试用例和发送报告,都放入一个.py文件对于接口的使用非常不灵活就需要数据和接口业务进行分离让代码之间的 耦合性降低.和实现接口的分层管理,所以需要对代码进 ...

  10. day31 Pyhton 面向对象的基础 三大特性

    一.内容回顾 封装 1.概念 笔记 2.__名字 在类的外部就不能用了 3.私有化的 不能被子类继承,也不能在其他任何类中调用 三个装饰器方法(装饰类中的方法) 1.不被修饰的  普通方法,会使用对象 ...