文章概览:
1、MapReduce简介
2、MapReduce有哪些角色?各自的作用是什么?
3、MapReduce程序执行流程
4、MapReduce工作原理
5、MapReduce中Shuffle过程
6、MapReduce编程主要组件
7、针对MapReduce的缺点,YARN解决了什么?

MapReduce简介

MapReduce是一种并行可扩展计算模型,并且有较好的容错性,主要解决海量离线数据的批处理。实现下面目标
★ 易于编程
★ 良好的扩展性
★ 高容错性
 

MapReduce有哪些角色?各自的作用是什么?

MapReduce由JobTracker和TaskTracker组成。JobTracker负责资源管理和作业控制,TaskTracker负责任务的运行。
 

MapReduce程序执行流程

程序执行流程图如下:
 
(1) 开发人员编写好MapReduce program,将程序打包运行。
(2) JobClient向JobTracker申请可用Job,JobTracker返回JobClient一个可用Job ID。
(3) JobClient得到Job ID后,将运行Job所需要的资源拷贝到共享文件系统HDFS中。
(4) 资源准备完备后,JobClient向JobTracker提交Job。
(5) JobTracker收到提交的Job后,初始化Job。
(6) 初始化完成后,JobTracker从HDFS中获取输入splits(作业可以该启动多少Mapper任务)。
(7) 与此同时,TaskTracker不断地向JobTracker汇报心跳信息,并且返回要执行的任务。
(8) TaskTracker得到JobTracker分配(尽量满足数据本地化)的任务后,向HDFS获取Job资源(若数据是本地的,不需拷贝数据)。
(9) 获取资源后,TaskTracker会开启JVM子进程运行任务。
注:
(3)中资源具体指什么?主要包含:
    ● 程序jar包、作业配置文件xml
    ● 输入划分信息,决定作业该启动多少个map任务
    ● 本地文件,包含依赖的第三方jar包(-libjars)、依赖的归档文件(-archives)和普通文件(-files),如果已经上传,则不需上传
 

MapReduce工作原理

工作原理图如下:
map task
程序会根据InputFormat将输入文件分割成splits,每个split会作为一个map task的输入,每个map task会有一个内存缓冲区,
输入数据经过map阶段处理后的中间结果会写入内存缓冲区,并且决定数据写入到哪个partitioner,当写入的数据到达内存缓冲
区的的阀值(默认是0.8),会启动一个线程将内存中的数据溢写入磁盘,同时不影响map中间结果继续写入缓冲区。在溢写过程中,
MapReduce框架会对key进行排序,如果中间结果比较大,会形成多个溢写文件,最后的缓冲区数据也会全部溢写入磁盘形成一个溢写
文件(最少有一个溢写文件),如果是多个溢写文件,则最后合并所有的溢写文件为一个文件。

reduce task

当所有的map task完成后,每个map task会形成一个最终文件,并且该文件按区划分。reduce任务启动之前,一个map task完成后,
就会启动线程来拉取map结果数据到相应的reduce task,不断地合并数据,为reduce的数据输入做准备,当所有的map tesk完成后,
数据也拉取合并完毕后,reduce task 启动,最终将输出输出结果存入HDFS上。
 

MapReduce中Shuffle过程

Shuffle的过程:描述数据从map task输出到reduce task输入的这段过程。
我们对Shuffle过程的期望是:
★ 完整地从map task端拉取数据到reduce task端 
★ 跨界点拉取数据时,尽量减少对带宽的不必要消耗
★ 减小磁盘IO对task执行的影响
 
先看map端:
split被送入map task后,程序库决定数据结果数据属于哪个partitioner,写入到内存缓冲区,到达阀值,开启溢写过程,进行key排序,
如果有combiner步骤,则会对相同的key做归并处理,最终多个溢写文件合并为一个文件。
 
再看reduce端:
多个map task形成的最终文件的对应partitioner会被对应的reduce task拉取至内存缓冲区,对可能形成多个溢写文件合并,最终
作为resuce task的数据输入 。
 

MapReduce编程主要组件

InputFormat类:分割成多个splits和每行怎么解析。   
Mapper类:对输入的每对<key,value>生成中间结果。
Combiner类:在map端,对相同的key进行合并。
Partitioner类:在shuffle过程中,将按照key值将中间结果分为R份,每一份都由一个reduce去完成。
Reducer类:对所有的map中间结果,进行合并。
OutputFormat类:负责输出结果格式。
编程框架如下:
 
 

针对MapReduce的缺点,YARN解决了什么?

MapReduce由以下缺点:
★ JobTracker挂掉,整个作业挂掉,存在单点故障
★ JobTracker既负责资源管理又负责作业控制,当作业增多时,JobTracker内存是扩展的瓶颈
★ map task全部完成后才能执行reduce task,造成资源空闲浪费
YARN设计考虑以上缺点,对MapReduce重新设计:
★ 将JobTracker职责分离,ResouceManager全局资源管理,ApplicationMaster管理作业的调度
★ 对ResouceManager做了HA设计
★ 设计了更细粒度的抽象资源容器Container
 
个人博客地址:http://wangxiaolong.org/
 
参考:

MapReduce工作原理详解的更多相关文章

  1. 块级格式化上下文(block formatting context)、浮动和绝对定位的工作原理详解

    CSS的可视化格式模型中具有一个非常重要地位的概念——定位方案.定位方案用以控制元素的布局,在CSS2.1中,有三种定位方案——普通流.浮动和绝对定位: 普通流:元素按照先后位置自上而下布局,inli ...

  2. log4j-over-slf4j工作原理详解

    log4j-over-slf4j工作原理详解 摘自:https://blog.csdn.net/john1337/article/details/76152906 置顶 2017年07月26日 17: ...

  3. Hadoop MapReduce八大步骤以及Yarn工作原理详解

    Hadoop是市面上使用最多的大数据分布式文件存储系统和分布式处理系统, 其中分为两大块分别是hdfs和MapReduce, hdfs是分布式文件存储系统, 借鉴了Google的GFS论文. MapR ...

  4. ASP.NET页面与IIS底层交互和工作原理详解

    转载自:http://www.cnblogs.com/lidabo/archive/2012/03/13/2393200.html 第一回: 引言 我查阅过不少Asp.Net的书籍,发现大多数作者都是 ...

  5. ASP.NET页面与IIS底层交互和工作原理详解(第一回)

    引言 我查阅过不少Asp.Net的书籍,发现大多数作者都是站在一个比较高的层次上讲解Asp.Net.他们耐心.细致地告诉你如何一步步拖放控件.设置控件属性.编写CodeBehind代码,以实现某个特定 ...

  6. 交换机工作原理、MAC地址表、路由器工作原理详解

    一:MAC地址表详解 说到MAC地址表,就不得不说一下交换机的工作原理了,因为交换机是根据MAC地址表转发数据帧的.在交换机中有一张记录着局域网主机MAC地址与交换机接口的对应关系的表,交换机就是根据 ...

  7. HTTP响应报文与工作原理详解

    超文本传输协议(Hypertext Transfer Protocol,简称HTTP)是应用层协议.HTTP 是一种请求/响应式的协议,即一个客户端与服务器建立连接后,向服务器发送一个请求;服务器接到 ...

  8. 【转】HTTP响应报文与工作原理详解

    超文本传输协议(Hypertext Transfer Protocol,简称HTTP)是应用层协议.HTTP 是一种请求/响应式的协议,即一个客户端与服务器建立连接后,向服务器发送一个请求;服务器接到 ...

  9. HTTP响应报文与工作原理详解(转)

    超文本传输协议(Hypertext Transfer Protocol,简称HTTP)是应用层协议.HTTP 是一种请求/响应式的协议,即一个客户端与服务器建立连接后,向服务器发送一个请求;服务器接到 ...

随机推荐

  1. 强大的 Node.js Web 框架 - Daze.js

    去年年初对 Node.js 比较感兴趣,也用了很多 Node.js 的框架,但是开发体验不是特别好,我之前也是后端转前端,然后再接触 Node.js ,所以用过挺多的服务端框架,相对js而言,设计一款 ...

  2. gRPC-Protocol基础知识-C#篇

    本文使用协议缓冲区语言的proto3版本,为C#程序员提供了使用协议缓冲区的基本介绍. 通过创建一个简单的示例应用程序,展示了如何 在.proto文件中定义消息格式. 使用协议缓冲区编译器. 使用C# ...

  3. CCNP七层参考模型

    一.OSI七层参考模型 七层参考模型由ISO组织提出,为什么是参考模型呢?因为我们现在实际应用的是TCP/IP协议栈,OSI模型仅供学习参考,下面具体说一下有哪七层: (7)应用层:应用程序和服务功能 ...

  4. Centos-用户管理-useradd userdel usermod groupadd groupdel id

    linux是多用户.多任务操作系统 linux角色分类 超级用户 root # 管理员.特定服务主进程 0 普通用户    $  普通管理员.服务运行需要的用户 500~65535 虚拟用户 不能登录 ...

  5. 对抗生成网络 Generative Adversarial Networks

    1. Basic idea 基本任务:要得到一个generator,能够模拟想要的数据分布.(一个低维向量到一个高维向量的映射) discriminator就像是一个score function. 如 ...

  6. Python练习题 046:Project Euler 019:每月1日是星期天

    本题来自 Project Euler 第19题:https://projecteuler.net/problem=19 ''' How many Sundays fell on the first o ...

  7. selenium学习之元素等待(四)

    --为什么要设置元素等待: 目前大多数web应用程序都是使用AJAX和JavaScript开发,每次加载一个网页,包括静态网页和动态网页,也就是加载各种HTML标签和JS文件.在网页中进行元素定位时, ...

  8. Hyper-V Server + Windows Admin Center

    2020年的十一黄金周是双节,偶然间得知再出现双节可能要几十年之后了,很可惜我并没有出去游玩的打算.所以假期没什么事,就来研究下Hyper Server + Windows Admin Center. ...

  9. 091 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 02 static关键字 01 static关键字(上)

    091 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 ...

  10. Python3基础——递归

    递归函数 如果一个函数在内部调用自身本身,这个函数就是递归函数. 递归函数的优点是定义简单,逻辑清晰.理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰. 使用递归函数需要注意防止栈 ...