CF613D Kingdom and its Cities 虚树 树形dp 贪心
发现是一个树上关键点问题 所以考虑虚树刚好也有标志\(\sum k\leq 100000\)即关键点总数的限制。
首先当k==1时 答案显然为0。
然后考虑无解情况 容易发现这种情况是两个点同时为关键点 那么我们只需要判断是否存在两个点相连的情况就好了。
这个可以在建立虚树时候判断 我多此一举了 直接标记父亲然后判断父亲是否存在。
接下来考虑如何统计答案。
可以从下往上观察 在某个点处统计儿子们的贡献。
假设儿子都是关键点 考虑当前点是否是关键点 如果是 显然都得断开一遍。且向上传递的时候这个点是关键点。
如果当前不是 那么如果有>1个儿子 那么在当前断开显然是比较优的且向上传递的时候这个点不是关键点、
如果只有一个儿子 可以在当前断开 不过更优的是可以去上面断开这个结果不会更差。
其实就这三种情况(类似dp 可以发现第一个决策时固定的 第二个决策是最优的 第三个决策根据不会更差的那套理论 可以发现也是最优的。
注意特判 有效儿子为0的情况.
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=100010;
int n,Q,len,cnt,ans,top;
int f[MAXN][20],Log[MAXN],dfn[MAXN],d[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
int a[MAXN],vis[MAXN],s[MAXN],v[MAXN];
vector<int>g[MAXN];
inline int cmp(int x,int y){return dfn[x]<dfn[y];}
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline void dfs(int x,int fa)
{
dfn[x]=++cnt;d[x]=d[fa]+1;f[x][0]=fa;
rep(1,Log[d[x]],i)f[x][i]=f[f[x][i-1]][i-1];
for(int i=lin[x];i;i=nex[i])
{
int tn=ver[i];
if(tn==fa)continue;
dfs(tn,x);
}
}
inline int LCA(int x,int y)
{
if(d[x]>d[y])swap(x,y);
fep(Log[d[y]],0,i)if(d[f[y][i]]>=d[x])y=f[y][i];
if(x==y)return x;
fep(Log[d[x]],0,i)if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
}
inline void insert(int x)
{
if(top==1)return s[++top]=x,void();
int lca=LCA(s[top],x);
if(s[top]==lca)return s[++top]=x,void();
while(top>1&&dfn[s[top-1]]>=dfn[lca])
{
g[s[top-1]].pb(s[top]);
--top;
}
if(s[top]!=lca)
{
g[lca].pb(s[top]);
s[top]=lca;
}
s[++top]=x;
}
inline void dp(int x)
{
int mark=0;
vep(0,g[x].size(),i)
{
int tn=g[x][i];
dp(tn);
if(!v[tn])continue;
if(v[x])++ans;
else ++mark;
v[tn]=0;
}
if(!v[x])
{
if(mark==1)v[x]=1;
else ++ans;
}
g[x].clear();
}
int main()
{
//freopen("1.in","r",stdin);
get(n);
rep(2,n,i)
{
int get(x),get(y);
add(x,y);add(y,x);
Log[i]=Log[i>>1]+1;
}
dfs(1,0);get(Q);
rep(1,Q,T)
{
int get(k),flag=0;
rep(1,k,i)get(a[i]),vis[f[a[i]][0]]=1;
rep(1,k,i)if(vis[a[i]])flag=1;
rep(1,k,i)vis[f[a[i]][0]]=0;
if(k==1){puts("0");continue;}
if(flag){puts("-1");continue;}
sort(a+1,a+1+k,cmp);v[a[1]]=1;
s[top=1]=1;if(a[1]!=1)insert(a[1]);
rep(2,k,i)insert(a[i]),v[a[i]]=1;
while(top>1)g[s[top-1]].pb(s[top]),--top;
ans=0;dp(1);put(ans);v[1]=0;
}
return 0;
}
</details>
CF613D Kingdom and its Cities 虚树 树形dp 贪心的更多相关文章
- CF613D Kingdom and its Cities 虚树 + 树形DP
Code: #include<bits/stdc++.h> #define ll long long #define maxn 300003 #define RG register usi ...
- 【CF613D】Kingdom and its Cities 虚树+树形DP
[CF613D]Kingdom and its Cities 题意:给你一棵树,每次询问给出k个关键点,问做多干掉多少个非关键点才能使得所有关键点两两不连通. $n,\sum k\le 10^5$ 题 ...
- CF613D Kingdom and its Cities 虚树
传送门 $\sum k \leq 100000$虚树套路题 设$f_{i,0/1}$表示处理完$i$以及其所在子树的问题,且处理完后$i$所在子树内是否存在$1$个关键点满足它到$i$的路径上不存在任 ...
- 【BZOJ-3572】世界树 虚树 + 树形DP
3572: [Hnoi2014]世界树 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1084 Solved: 611[Submit][Status ...
- 【BZOJ-2286】消耗战 虚树 + 树形DP
2286: [Sdoi2011消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2120 Solved: 752[Submit][Status] ...
- bzoj 2286(虚树+树形dp) 虚树模板
树链求并又不会写,学了一发虚树,再也不虚啦~ 2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 5002 Sol ...
- BZOJ_2286_[Sdoi2011]消耗战_虚树+树形DP+树剖lca
BZOJ_2286_[Sdoi2011]消耗战_虚树+树形DP Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的 ...
- BZOJ5341[Ctsc2018]暴力写挂——边分治+虚树+树形DP
题目链接: CSTC2018暴力写挂 题目大意:给出n个点结构不同的两棵树,边有边权(有负权边及0边),要求找到一个点对(a,b)满足dep(a)+dep(b)-dep(lca)-dep'(lca)最 ...
- [WC2018]通道——边分治+虚树+树形DP
题目链接: [WC2018]通道 题目大意:给出三棵n个节点结构不同的树,边有边权,要求找出一个点对(a,b)使三棵树上这两点的路径权值和最大,一条路径权值为路径上所有边的边权和. 我们按照部分分逐个 ...
随机推荐
- 为什么是link-visited-hover-active原理这样的特殊
前言 通常我们在设置链接的一些伪类(link,visited,hover,active)样式时,要让不同的状态显示正确的样式,我们需要按一定的顺序设置这些伪类的样式.这里我就按css2规范中推荐的顺序 ...
- XHXJ's LIS,还是dp
题目: background: #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully re ...
- C# 跨平台UI 技术
构建跨平台应用程序的的几种UI技术,以C# 或者其他基于.NET的 语言(诸如:Visual Basic[VB]).本文研究了三种跨平台技术,并讨论了在哪些情况下开发人员可以使用这些技术.本文使你对可 ...
- springBoot整合redis(作缓存)
springBoot整合Redis 1,配置Redis配置类 package org.redislearn.configuration; import java.lang.reflect.Method ...
- 阻止 iPhone 视频自动全屏
最近一年都在做直播,遭video 全屏的问题困扰了很久.下面将阻止 ios视频自动全屏的办法写出来.添加 playsinline 和 webkit-playsinline="true&quo ...
- Vmware虚拟机下不能访问网络的解决办法之一
Vmware虚拟机下不能访问网络的解决办法之一 1.这个是默认的网络设置 2.如果不能访问网络,看下VMware相关的服务有没有打开,win+R 3.找到VMware的相关选项,全部启用(当然网络可能 ...
- bzoj3620似乎在梦中见过的样子
bzoj3620似乎在梦中见过的样子 题意: 给出一个字符串,要求求出形如A+B+A的子串数量,且lenA≥k,lenB≥1.字符串长度≤15000,k≤100,所以字符长度为小写字母. 题解: 第一 ...
- Go的100天之旅-04基础数据类型
基础数据类型 在变量的定义中,我们讲了每个变量是有类型的,类型在计算机中是用来约束数据的解释.Go语言和其它计算机语言一样,提供丰富了丰富的数据类型,我们就来看看到底有哪些类型,同时也可以比较一下它和 ...
- sql多表语句
多条件查询条件判空 最优写法 3三表带条件查询
- kafka零拷贝
Kafka之所以那么快的另外一个原因就是零拷贝(zero-copy)技术.本文我们就来了解Kafka中使用的零拷贝技术为什么那么快. 传统的文件拷贝 传统的文件拷贝通常需要从用户态去转到核心态,经过r ...