感知机(perceptron)概念与实现
感知机(perceptron)
模型:
简答的说由输入空间(特征空间)到输出空间的如下函数:
\]
称为感知机,其中,\(w\)和\(b\)表示的是感知机模型参数,\(w \in R^n\)叫做权值,\(b \in R\)叫做偏置(bias)
感知机是一种线性分类模型属于判别模型。
感知机的几何解释:线性方程:$$w \cdot x + b = 0$$对应于特征空间\(R^n\)中的一个超平面S,这个超平面将特征空间分为两个部分,位于两部分的点(特征向量)分别被分为正负两类,超平面S被称为分离超平面。
策略
首先感知机的数据集是对线性可分的数据集的,所谓线性可分就是存在这么一个超平面可以把数据完全正确的划分到两边。
感知机学习的目标就是要得出\(w \quad b\),需要确定一个(经验)损失函数,并将损失函数最小化。对于这个损失函数我们最容易想到的就是误分类的总数,但是我们也要注意到这个不能够是\(w \quad b\)的可导连续函数,所以我们选择点误分类的点到超平面的距离作为损失函数。最终得到损失函数定义为:
\]
算法
这里我们用的是随机梯度下降法,思想是:首先随机选择一个分离超平面\(w_0,b_0\)然后用随机梯度下降不断最小化目标函数,最终得到完全正确的分类效果
感知机学习算法的原始形式
1.选择初始值\(w_0,b_0\)
2.在训练集中选取数据\((x_i,y_i)\)
3.如果\(y_i(w \cdot x_i+b)\le 0\)
\]
4.跳转至2,直至训练集中没有误分类点
代码实现:
w = [0, 0]
b = 0
def createDataSet():
"""
create dataset for test
"""
return [[(3, 3), 1], [(4, 3), 1], [(1, 1), -1]]
def update(item):
"""
update with stochastic gradient descent
"""
global w, b
w[0] += item[1] * item[0][0]
w[1] += item[1] * item[0][1]
b += item[1]
def cal(item):
"""
calculate the functional distance between 'item' an the dicision surface. output yi(w*xi+b).
"""
res = 0
for i in range(len(item[0])):
res += item[0][i] * w[i]
res += b
res *= item[1]
return res
def check():
"""
check if the hyperplane can classify the examples correctly
"""
flag = False
for item in training_set:
if cal(item) <= 0:
flag = True
update(item)
if not flag:
print "RESULT: w: " + str(w) + " b: " + str(b)
return flag
if __name__ == "__main__":
training_set = createDataSet()
while check():
pass
感知机学习算法的对偶形式:
1.\(\alpha \gets 0,b \gets 0\)
2.在训练集中选取数据\((x_i,y_i)\)
3.如果\(y_i(\sum_{j=1}^{N}\alpha_jy_ix_j\cdot x_i+b) \le 0\)
\]
4.转至2,直到没有误分类的数据
代码实现
这里主要是有一个叫做gram矩阵的东西,因为我们发现下面的计算过程中都是以内积的形式存在的,所以说这部分的值可以先算出来。\(G=[x_i*x_j]\)
import numpy as np
def createDataSet():
"""
create data set for test
"""
return np.array([[[3, 3], 1], [[4, 3], 1], [[1, 1], -1]])
def cal_gram():
"""
calculate the Gram matrix
"""
g = np.empty((len(training_set), len(training_set)), np.int)
for i in range(len(training_set)):
for j in range(len(training_set)):
g[i][j] = np.dot(training_set[i][0], training_set[j][0])
return g
def update(i):
"""
update parameters using stochastic gradient descent
"""
global alpha, b
alpha[i] += 1
b = b + y[i]
def cal(i):
"""
cal
"""
global alpha, b, x, y
res = np.dot(alpha * y, Gram[i])
res = (res + b) * y[i]
return res
def check():
"""
check if the hyperplane can classify the examples correctly
"""
global alpha, b, x, y
flag = False
for i in range(len(training_set)):
if cal(i) <= 0:
flag = True
update(i)
if not flag:
w = np.dot(alpha * y, x)
print "RESULT: w: " + str(w) + " b: " + str(b)
return False
return True
if __name__ == "__main__":
training_set = createDataSet()
alpha = np.zeros(len(training_set), np.float)
b = 0.0
Gram = None
y = np.array(training_set[:, 1])
x = np.empty((len(training_set), 2), np.float)
for i in range(len(training_set)):
x[i] = training_set[i][0]
Gram = cal_gram()
while check():
pass
本文链接
以上内容参考自《统计学习方法》
感知机(perceptron)概念与实现的更多相关文章
- 2. 感知机(Perceptron)基本形式和对偶形式实现
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 20151227感知机(perceptron)
1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...
- 感知机(perceptron)
- 神经网络 感知机 Perceptron python实现
import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1 ...
- 1. 感知机原理(Perceptron)
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)
最小二乘线性回归,感知机,逻辑回归的比较: 最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...
- 利用Python实现一个感知机学习算法
本文主要参考英文教材Python Machine Learning第二章.pdf文档下载链接: https://pan.baidu.com/s/1nuS07Qp 密码: gcb9. 本文主要内容包括利 ...
- 感知机和BP神经网络
一.感知机 1.感知机的概念 感知机是用于二分类的线性分类模型,其输入是实例的特征向量,输出是实例的类别,类别取+1和-1二个值,+1代表正类,-1代表负类.感知机对应于输入空间(特征空间)中将实例分 ...
- Alink漫谈(十五) :多层感知机 之 迭代优化
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总 ...
随机推荐
- Navicat Premium 的常用功能
1.快捷键 1.1. F8 快速回到当前对象列表 1.2. Ctrl + q 打开查询界面 1.3. Ctrl + d 快速修改当前的表结构 1.4. Ctrl + r 运行当前查询界面里面的 sql ...
- ubuntu重启搜狗输入法
fcitx | xargs kill sogou-qimpanel | xargs kill 或者编写Shell脚本restart_sougou.sh,放到/usr/bin目录下,不要忘记chmod修 ...
- gedit 乱码问题
因为不同文本的编码方式不同,比如windows下编码方式为GB18030编码 (中文简体环境中的ANSI为GB18030编码,用2个或4个字节表示中文.) 但gedit初始设置并没有自动识别文本的编码 ...
- 2MyBatis入门--深入浅出MyBatis技术原理与实践(笔记)
什么是 MyBatis ? MyBatis 是支持定制化 SQL.存储过程以及高级映射的优秀的持久层框架.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis ...
- php文件锁
前言 1.锁机制之所以存在是因为并发问题导致的资源竞争,为了确保操作的有效性和完整性,可以通过锁机制将并发状态转换成串行状态.作为锁机制中的一种,PHP 的文件锁也是为了应对资源竞争.假设一个应用场景 ...
- Android之ListView性能优化——使用ConvertView和ViewHolder
使用ConvertView和ViewHolder的优化是针对ListView的Adapter(BaseAdapter)的.这种优化的优点如下: 1)重用了ConveertView,在很大程度上减少了内 ...
- manacher算法专题
一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...
- java程序员快速掌握python系列——概述
这一系列主要是总结学习python过程中的方方面面(已经学完,时间大概是一周左右).当然限于个人水平java也就是够用,python短时间内也不可能深入到哪里去.所以这次的分享的目的是能够快速使用py ...
- 初试PHP单元测试TDD之安装PHPUnit
东风吹战鼓擂,一年一度的校招季开始了,最为一名即将踏入社会的搬砖工,自然也闲不下来了.各种总结.恶补.面经在所难免.当遇见敏捷开发时,有点蒙了,这是什么东东,绝对不能吃!既然是一种软件开发的方式,听上 ...
- MySQL 权限与安全
一.MySQL权限系统通过两个阶段进行认证: (A) 对用户进行身份认证,IP地址和用户名联合, (B) 对合法用户赋予相应权限,权限表在数据库启动的时候载入内存中. 二.在权限的存取过程中,会用到& ...