HDU King (非连通图的差分约束,经典好题)
King
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2216 Accepted Submission(s): 999
Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.
The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.
After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to do it by proving that his decisions were wrong.
Therefore some conspirators presented to the young king a set of problems that he had to decide about. The set of problems was in the form of subsequences Si = {aSi, aSi+1, ..., aSi+ni} of a sequence S = {a1, a2, ..., an}. The king thought a minute and then decided, i.e. he set for the sum aSi + aSi+1 + ... + aSi+ni of each subsequence Si an integer constraint ki (i.e. aSi + aSi+1 + ... + aSi+ni < ki or aSi + aSi+1 + ... + aSi+ni > ki resp.) and declared these constraints as his decisions.
After a while he realized that some of his decisions were wrong. He could not revoke the declared constraints but trying to save himself he decided to fake the sequence that he was given. He ordered to his advisors to find such a sequence S that would satisfy the constraints he set. Help the advisors of the king and write a program that decides whether such a sequence exists or not.
InputThe input consists of blocks of lines. Each block except the last corresponds to one set of problems and king's decisions about them. In the first line of the block there are integers n, and m where 0 < n <= 100 is length of the sequence S and 0 < m <= 100 is the number of subsequences Si. Next m lines contain particular decisions coded in the form of quadruples si, ni, oi, ki, where oi represents operator > (coded as gt) or operator < (coded as lt) respectively. The symbols si, ni and ki have the meaning described above. The last block consists of just one line containing 0.OutputThe output contains the lines corresponding to the blocks in the input. A line contains text successful conspiracy when such a sequence does not exist. Otherwise it contains text lamentable kingdom. There is no line in the output corresponding to the last ``null'' block of the input.Sample Input
4 2
1 2 gt 0
2 2 lt 2
1 2
1 0 gt 0
1 0 lt 0
0
Sample Output
lamentable kingdom
successful conspiracy
题目很长,意思是:有一个长度为n的序列和它的m个子序列。每一个子序列的和都有一个k来约束。gt代表大于k,lt代表小于k。问是否存在这个长度为n的序列。
让我们来思考这道题,首先对于给出的每个子序列我们可以看成子序列尾部到原序列起点的和减去子序列起点前一位到原序列起点的和。
例如:原序列为a[1]+a[2]+.....a[s]+...a[n]+a[n+1]+...... 子序列a[s]+....+a[n]=S[n]-S[s-1];
这样我们可以把S[n], S[s-1]看成两点,约束值k就可以看成对这两点间权大小和方向的约束。 按照上述过程可以建立起表示S[]点间关系的图。则就把问题转化为了最短路径问题。
若这个序列存在,则S[i]到图中任意一点都有最短路径,则图中不存在负环。所以判断是否存在序列就是判断是否存在负环。
好,具体思路清楚了,我们来研究如何建立起图。题中给出的约束条件有 > 和 < 。我们要做的事是将所有的约束条件全部转化为<= 。 即建立差分约束系统。
分析:
我们令S[i]= a1+a2+..+ai. 所以对于每一条约束条件比如:
a[si]+a[si+1]+…+a[si+ni]< ki . 我们可以转化为 S[si+ni] – S[si-1] <= ki-1.
这样就可以转化为了差分约束系统了.
该系统具有点的集合为0, 1,… n.其中对于S[si+ni] – S[si-1] <= ki-1条件我们可以得到 si-1 到 si+ni 的权值为ki-1的边.
对于a[si]+a[si+1]+…+a[si+ni] >ki 即 S[si+ni] – S[si-1] >=ki+1 我们可以得到 si+ni 到 si-1 的权值为-ki-1 的边.
而在判断差分约束系统是否有解时,建立的路径图可能不是连通的。因此我们还需要虚构一个超级源n+1号点.使得从n+1号点有边出来到0,1,…n号点且权值为0.
注意:图中原有的点是0到n共n+1个点
第一次讨论差分约束系统问题,若叙述有误,请各位指出。
具体代码如下:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define maxn 110
#define maxm 10010
#define inf 0x3f3f3f
using namespace std;
int n,m;
struct node
{
int to;
int next;
int c;
}edge[maxn];
int head[maxn];
int mark[maxn];
int cnt=;
void add(int u,int v,int c)
{
edge[cnt].next=head[u];
edge[cnt].to=v;
edge[cnt].c=c;
head[u]=cnt++;
}
int dis[maxn];
bool visit[maxn];//记录是否在队列中
void spfa()
{
queue<int>q;
for(int i=;i<=n+;i++)
{
dis[i]=inf;
visit[i]=;
mark[i]=;
}
dis[n+]=;
visit[n+]=;
mark[n+]++;
q.push(n+);
while(!q.empty())
{
int u=q.front();
q.pop();
visit[u]=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].c)
{
dis[v]=dis[u]+edge[i].c;
if(!visit[v])
{
q.push(v);
visit[v]=;
mark[v]++;
if(mark[v]>n+)
{
printf("successful conspiracy\n");
return;
}
}
}
}
}
printf("lamentable kingdom\n");
} int main()
{
while(cin>>n&&n)
{
cin>>m;
char s[];
int u,v,c;
cnt=;
memset(head,-,sizeof(head));
for(int i=;i<=m;i++)
{
scanf("%d%d%s%d",&u,&v,&s,&c);
if(s[]=='g')
{
add(u+v,u-,-(c+));
}
else if(s[]=='l')
{
add(u-,u+v,c-);
}
}
for(int i=;i<=n;i++)
{
add(n+,i,);
}
spfa();
}
return ;
}
HDU King (非连通图的差分约束,经典好题)的更多相关文章
- poj 3159(差分约束经典题)
题目链接:http://poj.org/problem?id=3159思路:题目意思很简单,都与给定的条件dist[b]-dist[a]<=c,求dist[n]-dist[1]的最大值,显然这是 ...
- HDU 3666 THE MATRIX PROBLEM (差分约束)
题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...
- hdu1529 差分约束(好题)
题意: 超市在每个时间都有需要的人数(24小时)比如 1 0 0 0 0 ....也就是说在第0个小时的时候要用一个人,其他的时间都不用人,在给你一些人工作的起始时间,如果雇佣了这个人,那 ...
- hdu 1529 Cashier Employment(差分约束)
Cashier Employment Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 3592 World Exhibition (差分约束,spfa,水)
题意: 有n个人在排队,按照前后顺序编号为1~n,现在对其中某两人的距离进行约束,有上限和下限,表示dis[a,b]<=c或者dis[a,b]>=c,问第1个人与第n个人的距离最多可能为多 ...
- HDU——2647Reward(DFS或差分约束)
Reward Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- HDU 1232 (畅通工程) 并查集经典模板题
Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府"畅通工程"的目标是使全省任何两个城镇间都可以实现交通 ...
- 【转】最短路&差分约束题集
转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...
- 转载 - 最短路&差分约束题集
出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★ ...
随机推荐
- HttpClient 4.5.3 get和post请求
HttpCilent 4.5.3 域名购买.com 后缀好域名 https://mi.aliyun.com/shop/38040 GET请求 CloseableHttpClient httpCilen ...
- SDN原理 OpenFlow协议 -2
本文由SDN原理视频而成:SDN原理 流表 FlowTable --- OpenFlow的核心 问题3 流表项 Flow Entry 单流表(OpenFlow 1.0版本) -> 多流表(Ope ...
- POJ 3281 Dining(最大流)
http://poj.org/problem?id=3281 题意: 有n头牛,F种食物和D种饮料,每头牛都有自己喜欢的食物和饮料,每种食物和饮料只能给一头牛,每头牛需要1食物和1饮料.问最多能满足几 ...
- js 获取地址栏域名以及URL
console.log(window.location.host) console.log(document.domain) console.log(window.location.href) con ...
- pairs 和 ipairs区别
local tab= { [] = "a", [] = "b", [] = "c" } for i,v in pairs(tab) do - ...
- thinkphp3.2笔记(2)调试模式,配置项C,创建模块, 四种URL模式,URL生成,跳转
一.调试模式 TP的调试模式其实就控制了TP关于配置信息以及函数的缓存功能 如果开启了调试模式,每次访问项目,Tp都会去加载最新的配置以及函数信息. 如果关闭了调试模式,当tp第一次访问时会降配置以及 ...
- SQL Server 查询优化 索引的结构与分类
一.索引的结构 关系型数据库中以二维表来表达关系模型,表中的数据以页的形式存储在磁盘上,在SQL SERVER中,数据页是磁盘上8k的连续空间,那么,一个表的所有数据页在磁盘上是如何组织的呢?分两种情 ...
- 从零开始新建一个Maven 、springMVC工程
相关代码:http://pan.baidu.com/s/1jIBUr1G 目标: 新建一个名为testSpringMvc的spring MVC工程,maven管理jar包: 1.新建maven管理的w ...
- 两个Fragment之间传递数据
1.第一个Fragment BlankFragment blankFragment = new BlankFragment();Bundle bundle = new Bundle();bundle. ...
- mysql 索引原理及查询优化
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句 ...