1111: [POI2007]四进制的天平Wag

链接

题意:

  用一些四进制数,相减得到给定的数,四进制数的数量应该尽量少,满足最少的条件下,求方案数。

分析:

  这道题拖了好久啊。

  参考Claris的博客。

首先将四进制数转化为四进制数。

一种的可行构造方案是四进制数上每一位的和。例如:$(003)_4$可以有3个$4^0$的砝码组成,当然也可以向前一位借位,$(010)_4-(001)_4$,此时就需要2个砝码了。

所以可以推出:每位最多借一位,最高位最高是n+1位。所以可以dp表示当前是否借位过。

f[i]表示到第i位,不向i+1借位的数字最少的个数,以及方案数。g[i]表示向i+1借位。即i+1位的一个数变成4个i位的数字,然后做差。(此处不管是否向高位借位,都不记录高位的贡献)

$f[i] = merge(f[i - 1] + b[i] ,g[i - 1] + b[i] + 1)$

$g[i] = merge(f[i - 1] + 4 - b[i], g[i - 1] + 3 - b[i])$

第一个转移方程表示当前这一位不向高位借位:

  1、如果低位也不向它借位,低位自己的答案是f[i-1],那么只需要b[i]个$4^i$的砝码即可组成这一位的答案。

  2、如果低位向它借位,低位的答案g[i-1],本来b[i]个即可满足,现在需要再增加一个给低位。例如:样例$(2212)_4$到第二位时,如果第一位向它借位,那么第一位的砝码是4-1-1=2,这一位的砝码是4,所以共3个。

第二个转移方程表示当前这一位不向高位借位:

  • 1、如果低位不向它借位,同样加上f[i-1],而它需要4-b[i]个重为$4^i$的砝码。

  • 2、如果低位向它借位,同样加上g[i-1],它需要3-b[i]个重为$4^i$的砝码,其中一个给了下一位了,那么此时是否还满足呢?样例$(2212)_4$到第二位时,借位后是16-4-4-4=4,下一位也要借位是4-1-1=2,中间其实可以消掉一个,二式相加得到16-4-4-1-1=6,刚好满足前两位的和是6

代码:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<bitset>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
char s[N];
int a[N], b[N];
struct Node{
int x, y;
Node() {}
Node(int _x,int _y) { x = _x, y = _y; }
Node operator + (int a) { return Node(x + a, y); }
Node operator + (Node A) {
if (x == A.x) return Node(x, (y + A.y) % );
return x < A.x ? *this : A;
}
}f[N], g[N]; int main() {
scanf("%s", s + );
int len = strlen(s + ), n = ;
for (int i = ; i <= len; ++i) a[i] = s[len - i + ] - ''; while (len) { // 分解为四进制数,每次找到模4剩下的余数
a[] = ;
for (int i = len; i; --i)
a[i - ] += (a[i] & ) * , a[i] >>= ; // 第i位模4后的余数,到下一位乘10
b[++n] = a[] / ;
for (; len && !a[len]; len --);
} n ++;
f[] = Node(, ); g[] = Node(1e9, );
for (int i = ; i <= n; ++i) { // 从低位往高位dp
f[i] = (f[i - ] + b[i]) + (g[i - ] + (b[i] + ));
g[i] = (f[i - ] + ( - b[i])) + (g[i - ] + ( - b[i]));
}
cout << f[n].y;
return ;
}

1111: [POI2007]四进制的天平Wag的更多相关文章

  1. BZOJ 1111: [POI2007]四进制的天平Wag

    1111: [POI2007]四进制的天平Wag Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 223  Solved: 151[Submit][St ...

  2. bzoj 1111 [POI2007]四进制的天平Wag 数位Dp

    1111: [POI2007]四进制的天平Wag Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 302  Solved: 201[Submit][St ...

  3. BZOJ1111 : [POI2007]四进制的天平Wag

    POI2007完结撒花~ 首先将n转化为四进制,从低位到高位DP f[i]表示这一位不向下一位借位 g[i]表示这一位向下一位借位,但借的那个不算在i f[0]=0,g[0]=inf f[i]=mer ...

  4. [POI2007]四进制的天平Wag

    Description Mary准备举办一个聚会,她准备邀请很多的人参加她的聚会.并且她准备给每位来宾准备一些金子作为礼物.为了不伤及每个人的脸面,每个人获得的金子必须相同.Mary将要用一个天平来称 ...

  5. bzoj 1111 - 四进制的天平

    Description 给定 1000的十进制数, 求 最小的 四幂拆分 方案 有多少种 Solution 先大除法 \(n\log_4(n)\)次取余转化为 四进制数. 然后从 低位 往 高位 \( ...

  6. T2963 贪吃蛇【BFS,四进制状压,A*】

    Online Judge:未知 Label:BFS,四进制状压,暴力,A*,哈希,玄学. 题目描述 给定一个n*m的地图和蛇的初始位置,地图中有些位置有石头,蛇不能经过.当然蛇也不能爬到地图之外. 每 ...

  7. .net 获取时间十二进制与二十四进制

    [说明] visual studio工具,.net项目,获取时间 [易错问题] ①二十四小时制(HH小时大写) System.DateTime.Now.ToString("yyyy-MM-d ...

  8. java进制转换器 图形用户界面 十进制及其相反数分别转化为二,四,八,十六进制

    package com.rgy.Test; import java.awt.Color; import java.awt.FlowLayout; import java.awt.GridLayout; ...

  9. Java【第二篇】基本语法之--进制、运算符

    进制 对于整数,有四种表示方式: 二进制:0,1 ,满 2 进 1.以 0b 或 0B 开头. 十进制:0-9 ,满 10 进 1. 八进制:0-7 ,满 8 进1. 以数字 0 开头表示. 十六进制 ...

随机推荐

  1. Why Reactive(Cocoa)?-时间线、输入、输出、复杂性、异步、状态、聚合

    To put it another way, the output at any one time is the result of combining all inputs. The output ...

  2. 31、springboot与任务

    异步任务 测试如下: 进行等待三秒在进行应答 @Service public class AsynService { public void hello(){ try { Thread.sleep() ...

  3. 关于PCA的一些学习汇总

    主成分分析PCA算法:为什么去均值以后的高维矩阵乘以其协方差矩阵的特征向量矩阵就是“投影”? https://www.zhihu.com/question/30094611 还有一些疑问:1.这个散步 ...

  4. Swift 开发语法

    文/Tuberose(简书作者)原文链接:http://www.jianshu.com/p/5e2d4c34f18e著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 简介 Swift 语 ...

  5. CTreeCtrl::HitTest

    CTreeCtrl::HitTest   调用此函数确定指定的位置点相对树视图控件的工作区的. HTREEITEM HitTest(  CPoint pt,  UINT* pFlags = NULL  ...

  6. 【Step By Step】将Dotnet Core部署到Docker下

    一.使用.Net Core构建WebAPI并访问Docker中的Mysql数据库 这个的过程大概与我之前的文章<尝试.Net Core—使用.Net Core + Entity FrameWor ...

  7. Linux下ELK环境搭建

    一.准备工作 准备3台机器,这样才能完成分布式集群的实验,当然能有更多机器更好: 192.168.3.64(e1) 192.168.3.62  (e2) 192.168.3.63(e3) 角色划分: ...

  8. iOS 根据url生成二维码贴到底图上

    根据url 生成指定尺寸的二维码图片 UIImage * createBinaryCodeImg(const char * url ,CGFloat size) { //create binary c ...

  9. 不可变字符串String与可变字符串StringBuilder、StringBuffer使用详解

    String字符串 char类型只能表示一个字符,而String可以表示字符串,也就是一个字符序列.但String不是基本类型,而是一个定义好的类,是一个引用类型.在Java中,可以将字符串直接量赋给 ...

  10. MySQL进阶(视图)---py全栈

    目录 mysql进阶(视图)---py全栈 一.什么是视图? 二.视图的特性 三.视图的优点 四.使用场合 五.视图基本操作 六.案例 mysql进阶(视图)---py全栈 一.什么是视图? 视图是从 ...