本文围绕以下几点进行阐述

1、为什么使用redis
2、使用redis有什么缺点
3、单线程的redis为什么这么快
4、redis的数据类型,以及每种数据类型的使用场景
5、redis的过期策略以及内存淘汰机制
6、redis和数据库双写一致性问题
7、如何应对缓存穿透和缓存雪崩问题
8、如何解决redis的并发竞争问题

正文

1、为什么使用redis

分析:博主觉得在项目中使用redis,主要是从两个角度去考虑:性能和并发。当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件(如zookpeer等)代替,并不是非要使用redis。因此,这个问题主要从性能和并发两个角度去答。

回答:如下所示,分为两点

(一)性能

如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。

题外话:忽然想聊一下这个迅速响应的标准。其实根据交互效果的不同,这个响应时间没有固定标准。不过曾经有人这么告诉我:”在理想状态下,我们的页面跳转需要在瞬间解决,对于页内操作则需要在刹那间解决。另外,超过一弹指的耗时操作要有进度提示,并且可以随时中止或取消,这样才能给用户最好的体验。”

那么瞬间、刹那、一弹指具体是多少时间呢?

根据《摩诃僧祗律》记载

一刹那者为一念,二十念为一瞬,二十瞬为一弹指,二十弹指为一罗预,二十罗预为一须臾,一日一夜有三十须臾。

那么,经过周密的计算,一瞬间为0.36 秒,一刹那有 0.018 秒.一弹指长达 7.2 秒。

(二)并发

如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问数据库。

2、使用redis有什么缺点

分析:大家用redis这么久,这个问题是必须要了解的,基本上使用redis都会碰到一些问题,常见的也就几个。

回答:主要是四个问题

(一)缓存和数据库双写一致性问题

(二)缓存雪崩问题

(三)缓存击穿问题

(四)缓存的并发竞争问题

这四个问题,我个人是觉得在项目中,比较常遇见的,具体解决方案,后文给出。

3、单线程的redis为什么这么快

分析:这个问题其实是对redis内部机制的一个考察。其实根据博主的面试经验,很多人其实都不知道redis是单线程工作模型。所以,这个问题还是应该要复习一下的。

回答:主要是以下三点

(一)纯内存操作
(二)单线程操作,避免了频繁的上下文切换
(三)采用了非阻塞I/O多路复用机制

题外话:我们现在要仔细的说一说I/O多路复用机制,因为这个说法实在是太通俗了,通俗到一般人都不懂是什么意思。博主打一个比方:小曲在S城开了一家快递店,负责同城快送服务。小曲因为资金限制,雇佣了一批快递员,然后小曲发现资金不够了,只够买一辆车送快递。

经营方式一

客户每送来一份快递,小曲就让一个快递员盯着,然后快递员开车去送快递。慢慢的小曲就发现了这种经营方式存在下述问题

  • 几十个快递员基本上时间都花在了抢车上了,大部分快递员都处在闲置状态,谁抢到了车,谁就能去送快递

  • 随着快递的增多,快递员也越来越多,小曲发现快递店里越来越挤,没办法雇佣新的快递员了

  • 快递员之间的协调很花时间

综合上述缺点,小曲痛定思痛,提出了下面的经营方式

经营方式二

小曲只雇佣一个快递员。然后呢,客户送来的快递,小曲按送达地点标注好,然后依次放在一个地方。最后,那个快递员依次的去取快递,一次拿一个,然后开着车去送快递,送好了就回来拿下一个快递。

对比

上述两种经营方式对比,是不是明显觉得第二种,效率更高,更好呢。在上述比喻中:

  • 每个快递员——————>每个线程

  • 每个快递——————–>每个socket(I/O流)

  • 快递的送达地点————–>socket的不同状态

  • 客户送快递请求————–>来自客户端的请求

  • 小曲的经营方式————–>服务端运行的代码

  • 一辆车———————->CPU的核数

于是我们有如下结论

1、经营方式一就是传统的并发模型,每个I/O流(快递)都有一个新的线程(快递员)管理。

2、经营方式二就是I/O多路复用。只有单个线程(一个快递员),通过跟踪每个I/O流的状态(每个快递的送达地点),来管理多个I/O流。

下面类比到真实的redis线程模型,如图所示

参照上图,简单来说,就是。我们的redis-client在操作的时候,会产生具有不同事件类型的socket。在服务端,有一段I/0多路复用程序,将其置入队列之中。然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。

需要说明的是,这个I/O多路复用机制,redis还提供了select、epoll、evport、kqueue等多路复用函数库,大家可以自行去了解。

4、redis的数据类型,以及每种数据类型的使用场景

分析:是不是觉得这个问题很基础,其实我也这么觉得。然而根据面试经验发现,至少百分八十的人答不上这个问题。建议,在项目中用到后,再类比记忆,体会更深,不要硬记。基本上,一个合格的程序员,五种类型都会用到。

回答:一共五种

(一)String

这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。

(二)hash

这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。

(三)list

使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。本人还用一个场景,很合适---取行情信息。就也是个生产者和消费者的场景。LIST可以很好的完成排队,先进先出的原则。

(四)set

因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。

另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

(五)sorted set

sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。

5、redis的过期策略以及内存淘汰机制

分析:这个问题其实相当重要,到底redis有没用到家,这个问题就可以看出来。比如你redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的,这个问题思考过么?还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?

回答:

redis采用的是定期删除+惰性删除策略。

为什么不用定时删除策略?

定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.

定期删除+惰性删除是如何工作的呢?

定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。

于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。

采用定期删除+惰性删除就没其他问题了么?

不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。

在redis.conf中有一行配置

# maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己)

1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。

2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。推荐使用,目前项目在用这种。

3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。应该也没人用吧,你不删最少使用Key,去随机删。

4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把redis既当缓存,又做持久化存储的时候才用。不推荐

5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。依然不推荐

6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。不推荐

ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。

6、redis和数据库双写一致性问题

分析:一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。

首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

7、如何应对缓存穿透和缓存雪崩问题

分析:这两个问题,说句实在话,一般中小型传统软件企业,很难碰到这个问题。如果有大并发的项目,流量有几百万左右。这两个问题一定要深刻考虑。

回答:如下所示

缓存穿透,即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。

解决方案:

(一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试

(二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。

(三)提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的key。迅速判断出,请求所携带的Key是否合法有效。如果不合法,则直接返回。

缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。

解决方案:

(一)给缓存的失效时间,加上一个随机值,避免集体失效。

(二)使用互斥锁,但是该方案吞吐量明显下降了。

(三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点

  • I 从缓存A读数据库,有则直接返回

  • II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。

  • III 更新线程同时更新缓存A和缓存B。

8、如何解决redis的并发竞争key问题

分析:这个问题大致就是,同时有多个子系统去set一个key。这个时候要注意什么呢?大家思考过么。需要说明一下,博主提前百度了一下,发现答案基本都是推荐用redis事务机制。博主不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。

回答:如下所示

(1)如果对这个key操作,不要求顺序

这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。

(2)如果对这个key操作,要求顺序

假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC.

期望按照key1的value值按照 valueA–>valueB–>valueC的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下

系统A key 1 {valueA  3:00}

系统B key 1 {valueB  3:05}

系统C key 1 {valueC  3:10}

那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。

其他方法,比如利用队列,将set方法变成串行访问也可以。总之,灵活变通。

Redis 总结精讲 看一篇成高手系统4的更多相关文章

  1. 转 Redis 总结精讲 看一篇成高手系统-4

    转 Redis 总结精讲 看一篇成高手系统-4 2018年05月31日 09:00:05 hjm4702192 阅读数:125633   本文围绕以下几点进行阐述 1.为什么使用redis 2.使用r ...

  2. Redis 总结精讲 看一篇成高手系统-4

    本文围绕以下几点进行阐述 1.为什么使用redis2.使用redis有什么缺点3.单线程的redis为什么这么快4.redis的数据类型,以及每种数据类型的使用场景5.redis的过期策略以及内存淘汰 ...

  3. 【转】Redis 总结精讲 看一篇成高手系统-4

    https://www.cnblogs.com/rjzheng/p/9096228.html 本文围绕以下几点进行阐述 1.为什么使用redis2.使用redis有什么缺点3.单线程的redis为什么 ...

  4. Redis 总结精讲 看一篇成高手系统

    转自:https://blog.csdn.net/hjm4702192/article/details/80518856 本文围绕以下几点进行阐述 1.为什么使用redis2.使用redis有什么缺点 ...

  5. redis 双写一致性 看一篇成高手系列1

    首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作. 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者 ...

  6. redis 延时任务 看一篇成高手系列2

    引言 在开发中,往往会遇到一些关于延时任务的需求.例如 生成订单30分钟未支付,则自动取消 生成订单60秒后,给用户发短信 对上述的任务,我们给一个专业的名字来形容,那就是延时任务.那么这里就会产生一 ...

  7. redis 缓存击穿 看一篇成高手系列3

    什么是缓存击穿 在谈论缓存击穿之前,我们先来回忆下从缓存中加载数据的逻辑,如下图所示 因此,如果黑客每次故意查询一个在缓存内必然不存在的数据,导致每次请求都要去存储层去查询,这样缓存就失去了意义.如果 ...

  8. 【转载】分布式之redis复习精讲

    注: 本篇文章转自:分布式之redis复习精讲 引言 为什么写这篇文章? 博主的<分布式之消息队列复习精讲>得到了大家的好评,内心诚惶诚恐,想着再出一篇关于复习精讲的文章.但是还是要说明一 ...

  9. Jaskson精讲第7篇-类继承关系下的JSON序列化与反序列化JsonTypeInfo

    Jackson是Spring Boot(SpringBoot)默认的JSON数据处理框架,但是其并不依赖于任何的Spring 库.有的小伙伴以为Jackson只能在Spring框架内使用,其实不是的, ...

随机推荐

  1. 【2017 ICPC亚洲区域赛北京站 J】Pangu and Stones(区间dp)

    In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He w ...

  2. Web前端---HTTP协议

    目录 HTTP协议 一.http协议概述 二.http请求报文 1.GET请求 2.POST请求 三.http响应报文 1.响应报文内容 2.状态码(Status Code) HTTP协议 一.htt ...

  3. mysql当前用户user()与current_user()

    Mysql在进行登陆时,会去匹配mysql库中的user表,并赋予相应的权限,但是怎么知道我们当时的登陆的用户名及相应的权限呢? 在Mysql中,有两个函数,一个是user(),一个是current_ ...

  4. Python中级 —— 03进程与线程

    多任务的实现有3种方式: 多进程模式: 多线程模式: 多进程+多线程模式. ** 进程: ** 不同任务,例如打开一个写字本,就是开启一个新进程. 多进程 Unix/Linux操作系统提供了一个for ...

  5. 关于pythond在终端中运行

    下载python并安装后,如果想要在终端中直接运行,我们需要配置环境变量. 在计算机右击选择属性,,选择高级属性,点击环境变量,,即可新建环境变量, ,然后可以在终端中运行python解释器.

  6. 【Spark】编程实战之模拟SparkRPC原理实现自定义RPC

    1. 什么是RPC RPC(Remote Procedure Call)远程过程调用.在Hadoop和Spark中都使用了PRC,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的 ...

  7. Makefile:(实验)多个目标匹配时会采用最完整匹配的目标

    结论源自实验测试,如果有疏漏希望指出 当Makefile中存在多个匹配的目标时,Makefile会采用哪个匹配的目标呢? 测试的Makefile如下: .PHONY: all clean quick_ ...

  8. Angular5学习笔记 路由配置

    因为angular-cli脚手架的关系,所以配置路由可以通过命令行来创建路由文件 原本创建一个angular项目的命令是ng new 项目名,就可以了,但这样创建出来的项目是没有路由文件的. 如果需要 ...

  9. 20155206 2016-2017-2 《Java程序设计》第三周学习总结

    20155206 2016-2017-2 <Java程序设计>第三周学习总结 教材学习内容总结 两个基本标准类:java.util.Scanner , java.math.BigDecim ...

  10. 考研编程练习----Prim算法的c语言实现

    本文引用自泽爷工作室http://www.zeyes.org/study/clang/189.html 算法思想: 1.在把生成树看成一个集合(开始集合为空,到各个结点的距离当然未知) 2.结点与集合 ...