线段树---poj2528 Mayor’s posters【成段替换|离散化】
poj2528 Mayor’s posters
题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报
思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012]
我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱)
例子一:1-10 1-4 5-10
例子二:1-10 1-4 6-10
普通离散化后都变成了[1,4][1,2][3,4]
线段2覆盖了[1,2],线段3覆盖了[3,4],那么线段1是否被完全覆盖掉了呢?
例子一是完全被覆盖掉了,而例子二没有被覆盖
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,下标位置向后延一下就行了 。。。比如说6是排名第三位的,我把它排名到第四位就好了。这个原理应该不难想出来的。
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.
线段树功能:update:成段替换 query:简单hash
线段树成段更新。查询的时候,实际上是二分遍历整个查询区间,每一个单位用vis来标记是否访问过。然后用D[x]来识别是否整个区间是连续的。
先不考虑离散化的问题。关于Update,我觉得本身它的Pushdown操作中携带本身题目要求的覆盖的成分,所以Pushdown是必须的。而不需要Pushup。
针对于Query操作。网上很多的题解中都没有Pushdown,这是因为本身Update的某个区间肯定和Query的某个区间是相同的,万一不同,还是需要Pushdown的,所以我写了这个操作在Query里,也是能AC的,而且我觉得是必要的。
关于离散化,由于数据范围大,查询量少。所以离散化是必要的,没什么好说的。。但是有一点,很多人忽略了完全覆盖的问题,即便是AC代码也是这样,事实上,这是因为Poj这题的数据太弱了。。。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <iostream> using namespace std;
#define Maxn 60005
#define lx (x<<1)
#define rx ((x<<1) | 1)
#define MID ((l + r)>>1)
struct Node
{
int val;
int id;
bool operator <(const Node &a) const
{
return val<a.val || (val == a.val && id<a.id);
}
}A[Maxn];
int D[Maxn<<2];
int vis[Maxn];
int rank[Maxn];
int t,n;
void init()
{
memset(D,0,sizeof(D));
memset(vis,0,sizeof(vis));
}
void pushDown(int x)
{
if(D[x])
{
D[lx] = D[rx] = D[x];
D[x] = 0;
}
}
int query(int L,int R,int l,int r,int x)
{
if(D[x])
{
if(!vis[D[x]]) //之前可能1张海报跨了很多区间,D[X]=d D[Y]=d 这里一次性就让 vis[d] =1 了 防止多次
{
vis[D[x]] = 1;
return 1;
}
return 0;
}
//我觉得这一步是必要的。即使对于本题没有作用,但是思路上要求我们要这么做。
//pushDown(x);
if(l == r) return 0;
int ans = 0;
if(L<=MID) ans += query(L,R,l,MID,lx);
if(MID+1<=R) ans +=query(L,R,MID+1,r,rx);
return ans;
}
void update(int d,int L,int R,int l,int r,int x)//延迟更新
{
if(L<=l && r<=R)
{
D[x] = d; //注意这里==d的原因
return; //如果存在区间更小的 大区间就要往下 相当于分割的效果
}
pushDown(x);
if(L<=MID) update(d,L,R,l,MID,lx);
if(MID+1<=R) update(d,L,R,MID+1,r,rx);
}
int main()
{
#ifndef ONLINE_JUDGE #endif
scanf(" %d",&t);
while(t--)
{
scanf(" %d",&n);
n *= 2;
for(int i=0;i<n;i++)
{
scanf(" %d",&A[i].val);
A[i].id = i;
}
sort(A,A+n);
int cnt = 1;
rank[A[0].id] = cnt;
int lastValue = A[0].val;//A[i].id存的是第几个
for(int i=1;i<n;i++)
{
if(A[i].val == lastValue) rank[A[i].id] = cnt;//rank[最小的那个值]=1 但是里面存的是之前第几个
//相邻数据如果相隔大于1,Rank向后延一位
else if(A[i].val - lastValue>1)
{
++cnt;
rank[A[i].id] = ++cnt;
lastValue = A[i].val;
}
else
{
rank[A[i].id] = ++cnt;
lastValue = A[i].val;
}
}
init();
for(int i=0;i<n/2;i++) update(i+1,rank[i<<1],rank[i<<1 | 1],1,cnt,1); // (1,rank[0],rank[1]) A[].id=0/1; 找到对应的cnt
int ans = query(1,cnt,1,cnt,1);
printf("%d\n",ans);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
线段树---poj2528 Mayor’s posters【成段替换|离散化】的更多相关文章
- 【线段树】Mayor's posters
[poj2528]Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 66154 Accept ...
- 线段树(单点更新and成段更新)
线段树需要的空间. 区间为1-->n 假设是一棵完全二叉树,且树高为i. 完全二叉树性质:第i层最多有2^(i-1)个结点. 那么 2^(i-1) = n; i = log2(n) + ...
- 线段树 G - Mayor's posters 小技巧
G - Mayor's posters POJ - 2528 这个题目要倒着来写,从后面往前面贴,因为前面的有些会被后面的覆盖. 所以我们就判断这张海报的位置有没有完全被覆盖,如果完全被覆盖了就不能贴 ...
- (线段树)Mayor's posters --poj -- 2528
链接: http://poj.org/problem?id=2528 覆盖问题, 要从后往前找, 如果已经被覆盖就不能再覆盖了,否则就可以覆盖 递归呀递归什么时候我才能吃透你 代码: #include ...
- POJ 2528.Mayor's posters-线段树(成段替换、离散数据、简单hash)
POJ2528.Mayor's posters 这道题真的是线段数的经典的题目,因为数据很大,直接建树的话肯定不可以,所以需要将数据处理一下,没有接触离散化的时候感觉离散化这个东西相当高级,其实在不知 ...
- hdu1698 Just a Hook 线段树:成段替换,总区间求和
转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1698 Problem ...
- 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)
Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...
- poj2528 Mayor's posters(线段树之成段更新)
Mayor's posters Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 37346Accepted: 10864 Descr ...
- POJ2528 Mayor's posters —— 线段树染色 + 离散化
题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...
随机推荐
- web前端 pdf 版电子 好书籍
http://www1.w3cfuns.com/feres.php?do=picture&listtype=book
- 001_02-python基础习题答案
python 基础习题 执行 Python 脚本的两种方式 如:脚本/python/test.py 第一种方式:python /python/test.py 第二中方式:在test.py中声明:/us ...
- 定时任务命令crontab
crontab: * * * * * [user] command分 时 日 月 周 [用户] 命令 第1列表示分钟0-59 每分钟用*或者 */1表示第2列表示小时0-23(0表示0点)第3列表示 ...
- java-spark的各种常用算子的写法
通常写spark的程序用scala比较方便,毕竟spark的源码就是用scala写的.然而,目前java开发者特别多,尤其进行数据对接.上线服务的时候,这时候,就需要掌握一些spark在java中的使 ...
- 嵌入式C语言自我修养 11:有一种函数,叫内建函数
11.1 什么是内建函数 内建函数,顾名思义,就是编译器内部实现的函数.这些函数跟关键字一样,可以直接使用,无须像标准库函数那样,要 #include 对应的头文件才能使用. 内建函数的函数命名,通常 ...
- django中的auth详解
Auth模块是什么 Auth模块是Django自带的用户认证模块: 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等 ...
- 重学Verilog(1)
1.线与.线或功能 wor module WO(A, B, C, D, WireOR) input A,B,C,D; output WireOr; wor WireOr; assign WireOr ...
- 20155202 2016-2017-2《Java程序设计》课程总结
20155202 2016-2017-2<Java程序设计>课程总结 (按顺序)每周作业链接汇总 预备作业1:第一次写随笔,我眼中的师生关系--未来我的大学生活 预备作业2:第二次随笔-- ...
- 20155337 2016-2017-2《Java程序设计》课程总结
20155337 2016-2017-2<Java程序设计>课程总结 (按顺序)每周作业链接汇总 <我的第一篇随笔> <做中学> <Java程序设计>第 ...
- 20155338 2016-2017-2《Java程序设计》实验四Android程序开发实验报告
2016-2017-2 20155338 <Java程序设计>实验四Android程序开发实验报告 实验过程及成果展示 1.修改res目录下的layout文件夹中的activity_mai ...