这题说的是给了n(14)个点,每个点都以他 为根的最大可容的孩子个数和最小的可溶孩子个数L[i] ,R[i]

问这n个点形成一棵树有多少种形态

我们让 dp[i][S] 表示 一 i为根节点 的 拥有孩子S(二进制数)状态的 方案数 , sub[S] , 表示 以 S 状态表示的 森林的 方案数, sum[S] 表示 一S 状态的 有根树 的 方案数

可以知道

dp[i][S] = sub[ S^(1<<i) ] { L[i]<=|S|<=R[i]   }

sum[S] = dp[i][S] { i=0,1,2,3,,,n-1 | S&1<<i!=0  }

sub[S] = sub[S] +  sum[H]*sub[S^H]{ H 为s 的 子集 ,然后 先固定 S 中第一个不是点 不是0 的一定要在 H 中, 这样是 为了保证 不会出现一个点被算了两次,可能这个点在枚举时存在对称性 , 我们一旦确定一个点在那个位置就可以避免这种情况的出现 }

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long ll;
const int mod = ;
int dp[][<<];
int sum[<<];
int sub[<<];
int L[],R[],n;
int cal(int S){
int num=;
for(int i=; i<n; ++i)
if(S&(<<i)) num++;
return num;
}
int main()
{
int cas;
scanf("%d",&cas);
for(int cc= ; cc<=cas; ++cc){
scanf("%d",&n);
for(int i=; i<n; ++i)
scanf("%d%d",&L[i],&R[i]);
for(int i=; i<n; ++i){
dp[i][]=;
}
sum[]=; sub[]=;
for(int S=; S<(<<n); ++S){
sum[S]=; sub[S]=;
int ge = cal(S);
for(int i =; i<n; ++i){
dp[i][S]=;
if( ( S&(<<i) )!= && L[i]<=ge&&R[i]>=ge ){
dp[i][S]= sub[S^(<<i)];
sum[S]= (dp[i][S]+sum[S])%mod;
}
}
int j=;
for( j=; j<n; ++j ) if(S&(<<j)) break; for(int H=S; H>; H=S&(H-)){
if((H&(<<j))==) continue;
ll a = sum[H];
ll b = sub[S^H];
sub[S]= ( sub[S] + a*b%mod )%mod;
}
}
int ans=;
for(int i=; i<n; ++i) ans=(ans+ dp[i][(<<n)-])%mod;
printf("%d\n",ans);
} return ;
}

hdu 5103 状态压缩dp的更多相关文章

  1. HDU 1074 (状态压缩DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...

  2. HDU 3341 状态压缩DP+AC自动机

    题目大意: 调整基因的顺序,希望使得最后得到的基因包含有最多的匹配串基因,使得所能达到的智商最高 这里很明显要用状态压缩当前AC自动机上点使用了基因的情况所能达到的最优状态 我最开始对于状态的保存是, ...

  3. hdu 4284 状态压缩dp

    题意: 有N 个点的无向图,要去其中 h个地点做事,做事需要先办理护照,之后可以挣一定数量的钱,知道了一开始有的总钱数,和 一些城市之间           道路的花费,问可不可以在 指定的 h 个城 ...

  4. hdu 2167 状态压缩dp

    /* 状态转移方程:dp[i][j]=Max(dp[i][j],dp[i-1][k]+sum[i][j]); */ #include<stdio.h> #include<string ...

  5. HDU 4856 (状态压缩DP+TSP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4856 题目大意:有一个迷宫.迷宫里有些隧道,每个隧道有起点和终点,在隧道里不耗时.出隧道就耗时,你的 ...

  6. HDU 4640 状态压缩DP 未写完

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4640 解题思路: 首先用一个简单的2^n*n的dp可以求出一个人访问一个给定状态的最小花费,因为这i个 ...

  7. 2016"百度之星" - 初赛(Astar Round2A)1002 / HDU 5691 状态压缩DP

    Sitting in Line Problem Description   度度熊是他同时代中最伟大的数学家,一切数字都要听命于他.现在,又到了度度熊和他的数字仆人们玩排排坐游戏的时候了.游戏的规则十 ...

  8. HDU 5067 (状态压缩DP+TSP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5067 题目大意:蓝翔挖掘机挖石子.把地图上所有石子都运回起点,问最少耗时. 解题思路: 首先得YY出 ...

  9. hdu 4539(状态压缩dp)

    题意:曼哈顿距离是指:|x1-x2|+|y1-y2|,只要知道这个概念题意就懂了. 分析:这道题与前面做的几道题有所不同,因为当前行不仅与前一行有关,而且与前两行有关,所以我们开数组的时候还要记录前两 ...

随机推荐

  1. ActiveMQ伪集群部署

    本文借鉴http://www.cnblogs.com/guozhen/p/5984915.html,在此基础上进行了完善,使之成为一个完整版的伪分布式部署说明,在此记录一下! 一.本文目的 介绍如何在 ...

  2. Android中的渐变

    LinearGradient的用法 LinearGradient linearGradient; linearGradient = new LinearGradient(0, 0, 0, getHei ...

  3. 【PHP】 php实现字符串反转:支持中英文

    strrev  函数对英文很好用,直接可以实现字符串翻转 但是面对中文呢?肯定都是乱码,对于这样的问题有很多,比如strstr,substr等函数都是这样的. PHP提供了mb_类的函数实现不同编码. ...

  4. activemq 实战 四 传输连接器-Transport connectors 4.2

    In order to exchange messages, producers and consumers (clients) need to connect to the broker. This ...

  5. 使用Java对文件进行解压缩

    最近在一个项目中需要对文件进行自动的解压缩,Java提供了这种支持,还是挺好用的. 工具包封装在java.util.zip中. 1.首先是多个文件压缩成一个ZIP文件 思路:用一个ZipOutputS ...

  6. 使用Android Studio调试内存问题

    http://blog.csdn.net/yutao52shi/article/details/50055669 前言 内存问题对于Android开发者是永远的痛.如果一个android程序员说他没有 ...

  7. jstl标签怎么实现分页中下一页

    <script type="text/javascript">           //分页按钮处理        function goPageAction(page ...

  8. IIS的安装和配置

    一.首先是安装IIS.打开控制面板,找到“程序与功能” 二. “打开或关闭Windows功能”, 安装 “Internet 信息服务” 三. 安装完后回控制面板里面,找到“管理工具” 四. 双击“In ...

  9. 【BZOJ3932】[CQOI2015]任务查询系统 主席树

    [BZOJ3932][CQOI2015]任务查询系统 Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si, ...

  10. [SQL] SQL 修复命令

        You should run the repair from the original installation media, using the following command line ...