DP_括号匹配序列问题
括号匹配问题
简单括号匹配问题是给出字符串,判断字符串中的括号是否匹配,此类问题核心解决方案就是利用栈的后进先出的特性,从左到右依次遍历字符串,遇左括号进栈,遇右括号将其与栈顶元素配对,若能配对,则栈顶元素出栈,继续遍历,若不能配对,则返回false。字符串遍历结束后,判断栈是否为空,若不为空返回false,若为空,返回true。以下有c和c++实现代码,用c++可以利用标准库提供的顺序容器适配器stack来实现栈结构,c语言则需要自己写栈结构,当然也可以用数组模拟栈结构,用一变量存放数组中最后面的元素的下标代表栈顶指针进行入栈出栈就可以了。
c语言版 题目来自http://nyoj.top/problem/2
/*
现在有一行括号序列,请你检查这行括号是否配对
输入
第一行输入一个数N(0<N<=100),表示有N组测试数据。后面的N行输入多组输入数据,
每组输入数据都是一个字符串S(S的长度小于10000,且S不是空串),测试数据组数少于5组。
数据保证S中只含有"[", "]", "(", ")" 四种字符
输出
每组输入数据的输出占一行,如果该字符串中所含的括号是配对的,则输出Yes,如果不配对则输出No
实现:
栈模型实现
*/
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h> typedef struct Node * PNODE; struct Node
{
char data;
PNODE pNext;
}NODE; typedef struct Stack
{
PNODE pTop; //永远指向栈顶元素
PNODE pBottom; //永远指向栈顶元素的下一个元素
}STACK,* PSTACK; /* 建立空栈 */
void InitStack(PSTACK pS)
{
pS->pTop = (PNODE)malloc(sizeof(NODE)); //头节点
pS->pBottom = pS->pTop;
pS->pTop->pNext = NULL; //将头节点指针域变成空的
} /* 进行压栈 */
void PushStack(PSTACK pS,char Str)
{
PNODE pNew = (PNODE)malloc(sizeof(NODE));//建立新节点
pNew->data = Str; //存储数据
pNew->pNext = pS->pTop; //将新节点进行压栈,头进头出
pS->pTop = pNew; //将头节点指向新节点
}
/* 进行出栈 */
char PopStack(PSTACK pS)
{
PNODE p = pS->pTop; //缓存出栈的节点地址
char str = p->data; //缓存出栈的节点数据 pS->pTop = p->pNext;//将栈顶往后移
free(p);//将出栈节点销毁
return str; //将出栈节点数据返回
}
/* 判断栈是否为空*/
bool empty(PSTACK pS)
{
if(pS->pTop == pS->pBottom)
return true;
else
return false;
} /* 扫描字符串 */
bool scanner(char * pStr)
{
STACK S;
int i = ;
bool ret = true; InitStack(&S);
while(*(pStr+i) != '\0')
{
switch(*(pStr+i))
{
case '(':
PushStack(&S,*(pStr+i));
break;
case '[':
PushStack(&S,*(pStr+i));
break;
case ')':
if(empty(&S))//如果栈已为空
{
return false;
}
ret = (PopStack(&S) == '(');
if(ret == false)
{
return ret;
}
break;
case ']':
if(empty(&S))
{
return false;
}
ret = (PopStack(&S) == '[');
if(ret == false)
{
return ret;
}
break;
}
i++;
}
if(empty(&S) == false) //如果扫描完字符串栈不是空的
{
ret = false;
}
return ret; } int main(void)
{
int n,ret;
char str[];
scanf("%d",&n);
getchar();
while(n--)
{
scanf("%s",str);
getchar();
if(scanner(str))
{
printf("Yes\n");
}
else
{
printf("No\n");
}
} return ;
}
c语言实现
c++版 题目来自http://codevs.cn/problem/2058/
/*括号配对*/
#include<iostream>
#include<stack>
#include<string>
using namespace std;
int main(void)
{
stack<char> my_stack;
int n;
cin >> n; while(n--){
while( !my_stack.empty() ) //清空栈
my_stack.pop();
string t_str;
int k = ;
string::iterator begin,end; cin >> t_str;
begin = t_str.begin();
end = t_str.end();
while(begin != end){
char t = *begin++;
if(t == '<' || t == '(' || t == '{' || t == '[')
my_stack.push(t);
else{
if(my_stack.empty()){
cout << "FALSE" << endl;
k = ;
break;
}
char tch = my_stack.top();
if(t == '>' && tch != '<' ||
t == '}' && tch != '{' ||
t == ')' && tch != '(' ||
t == ']' && tch != '['){
cout << "FALSE" << endl;
k = ;
break;
}
my_stack.pop();
}
}
if(k){
if(my_stack.size())
cout << "FALSE" << endl;
else
cout << "TRUE" <<endl;
}
} return ;
}
c++实现
括号序列问题
此类问题给出一串由'(' ')' '[' ']' 四种字符组成的字符串,要求在字符串中添加若干个括号,使整个字符串达到匹配状态,这类问题属于区间动态规划问题,试想,题目要求的是整个字符串匹配的时候的最小的添加的括号的个数,我们定义两个指针变量i,j 分别指向字符串的头和尾,如果s[i]和s[j]匹配,那整个问题的解就是除了s[i]和s[j]后的子串s[i+1]到s[j-1]的解(代码第33行),而子串的解又由更小的字串的解来确定,所以可以知道,此问题采用自底而上的解法,亦或者说成自小而大的解法。上面的过程也可称为问题的状态转移过程,在考虑完状态转移过程后还必须考虑边界问题,状态转移是由小串到大串,所以从右至左或从左至右都可以,但是要考虑边界问题,此问题中,边界问题就是只有一个字符的字串和空串,用i和j代表一前一后两个字符,那么只有一个字符时也就是i和j相等时候,此时,dp[i][j],也就是dp[i][i]为1,当字串为空串时,也是i>j时候 此时 dp[i][j]为0 也可作dp[i+1][i]为0.由此想来,得是从右至左处理字符串方便。在程序中,需要将每个子串的最优解存起来,所以有数组dp[i][j]存储 从i到j的这个字串的最优解是多少。
题目自 http://nyoj.top/problem/15
#include<bits/stdc++.h>
using namespace std; int d[][]; bool match(char a, char b) {
// i肯定在j前面,所以a肯定得是左括号,b肯定得是右括号
return (a == '(' && b == ')' ) ||
(a == '[' && b == ']');
} int main(void)
{
int N;
cin >> N;
getchar();
while(N--) {
string s;
getline(cin, s);
int len = s.size();
if( len == ) {
cout << << endl;
continue;
}
memset(d,,sizeof(d));
for(int i = ; i < len; ++i) {
d[i][i] = ;
} for( int i = len -; i >= ; --i ) {
for( int j = i + ; j < len; ++j ) {
d[i][j] = 0x3f3f3f3f; // 0x3f3f3f3f 代表无穷大,有意研究者可自行百度
if(match(s[i],s[j])) d[i][j] = d[i+][j-];
for( int k = i; k < j; ++k ) {
d[i][j] = min(d[i][j],d[i][k]+d[k+][j]);
}
}
} cout << d[][len-] << endl;
} return ;
}
代码实现
总结
动态规划作为一种解决问题的思想,其主要手段就是存储子问题的最优解来导出整个问题的最优解,那么需要考虑的就是最小的子问题如果处置,也就是边界问题,还有就是子问题如何向整个问题迈进或者整个问题如何分成子问题来求解,如何利用子问题的解,和选择最优解,也就是状态转移问题。
长袍纸扇山羊须,凉菜花生小酒,岂不美哉!
DP_括号匹配序列问题的更多相关文章
- [ZPG TEST 114] 括号匹配【树分治 点分治 括号序列】
1. 括号匹配 有一棵树,每个节点上都有一个括号(左括号或者右括号).有多少个有序点对(u, v)从u到v的路径上的节点构成的字符串是一个合法的括号匹配?(我们称这样的点对是合法的) 输 ...
- [NYOJ 15] 括号匹配(二)
括号匹配(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:6 描述 给你一个字符串,里面只包含"(",")","[&qu ...
- poj 2955 Brackets (区间dp 括号匹配)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- NYOJ15|括号匹配(二)|区间DP|Elena
括号匹配(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:6 描述 给你一个字符串,里面只包含"(",")","[&qu ...
- POJ-2955 Brackets(括号匹配问题)
题目链接:http://poj.org/problem?id=2955 这题要求求出一段括号序列的最大括号匹配数量 规则如下: the empty sequence is a regular brac ...
- 括号匹配性检测C语言实现
#include <stdio.h> #define SIMPLE_KUOHAO "(()1231qeqw)(@#$)" #define COMPLEX_KUOHAO ...
- 2016湖南省赛----G - Parenthesis (括号匹配)
2016湖南省赛----G - Parenthesis (括号匹配) Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of lengt ...
- ACM_括号匹配
括号匹配(栈) Time Limit: 2000/1000ms (Java/Others) Problem Description: 给一组包含[]()两种括号的序列,检查是否是合法的. 如:()[] ...
- CodeForces - 5C(思维+括号匹配)
题意 https://vjudge.net/problem/CodeForces-5C 给出一个括号序列,求出最长合法子串和它的数量. 合法的定义:这个序列中左右括号匹配. 思路 这个题和普通的括号匹 ...
随机推荐
- H5 签到功能
Introduce(介绍) 用户签到的H5例子(css+jquery,无图片),由于网上找的的用户签到例子都不好,要不就是好多图片组成的,要不就大量冗余代码,所以特意做了个签到界面(移动端). Use ...
- 深入浅出SharePoint2010——请假系统无代码篇之工作流设计
使用SharePoint Designer 2010进行设计. 主要使用的Actions如下图所示. 关于权限,考虑到严谨的权限设计,所以所有参与人员均为Read权限. 关于请假天数的计算,请假天数的 ...
- 外网访问用azure虚拟机搭建的网站
1.Ubuntu+Apache+PHP的环境搭建(此处省去了mysql的步骤) 在azure上搭建上述的开发环境和在本地PC搭建是一样的步骤,具体介绍请参看这里. 2.从外网访问 注意,这一步的前提是 ...
- (六)Linux下的压缩命令
======================================================================================== .zip格式的压缩和解 ...
- Django的时区设置问题
1.Django的时区问题 django默认的时区是UTC,平时是没有什么影响的,但是在需要将时间戳转换成本时区的时间或者是获取当前的本地的localtime的时候就出现了问题.之前程序在测试时是运行 ...
- gluoncv rpn 正负样本
https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/rpn/rpn_target.py def forward(self, i ...
- 【[SDOI2014]数表】
求 \[\sum_{i=1}^N\sum_{j=1}^Mσ(gcd(i,j))[σ(gcd(i,j))<=a]\] \(σ\)表示约数和函数 感觉非常难求的样子 先把套路搞出来 \[f(n)=\ ...
- 4、Web Service-Jaxws(Eclipse版本)实现查看天气和手机归属地
1.前提概要 免费的官网:http://www.webxml.com.cn/zh_cn/web_services.aspx 官网提供了各种免费的webservice 我们使用的是:http://ws. ...
- Level/levelup-1-简介
https://github.com/Level/levelup A node.js wrapper for abstract-leveldown compliant stores 一个为实现抽象le ...
- 修改Xcode工程名称
概述 有的时候需要在现有的项目上面开发一个新的项目,如果新建工程的话,就比较麻烦了,所以一般是直接现有的工程上面直接修改名字步骤如下: 1.修改工程名字 在这里修改完之后,会弹出一个对话框,点击Ren ...