OverView

Hash table based implementation of the Map interface. This implementation provides all of the optional map operations, and permits null values and the null key. (The HashMap class is roughly equivalent to Hashtable, except that it is unsynchronized and permits nulls.) This class makes no guarantees as to the order of the map; in particular, it does not guarantee that the order will remain constant over time.

This implementation provides constant-time performance for the basic operations (get and put), assuming the hash function disperses the elements properly among the buckets. Iteration over collection views requires time proportional to the "capacity" of the HashMap instance (the number of buckets) plus its size (the number of key-value mappings). Thus, it's very important not to set the initial capacity too high (or the load factor too low) if iteration performance is important.

An instance of HashMap has two parameters that affect its performance: initial capacity and load factor. The capacity is the number of buckets in the hash table, and the initial capacity is simply the capacity at the time the hash table is created. The load factor is a measure of how full the hash table is allowed to get before its capacity is automatically increased. When the number of entries in the hash table exceeds the product of the load factor and the current capacity, the hash table is rehashed (that is, internal data structures are rebuilt) so that the hash table has approximately twice the number of buckets.

As a general rule, the default load factor (.75) offers a good tradeoff between time and space costs. Higher values decrease the space overhead but increase the lookup cost (reflected in most of the operations of the HashMap class, including get and put). The expected number of entries in the map and its load factor should be taken into account when setting its initial capacity, so as to minimize the number of rehash operations. If the initial capacity is greater than the maximum number of entries divided by the load factor, no rehash operations will ever occur.

If many mappings are to be stored in a HashMap instance, creating it with a sufficiently large capacity will allow the mappings to be stored more efficiently than letting it perform automatic rehashing as needed to grow the table.

Note that this implementation is not synchronized. If multiple threads access a hash map concurrently, and at least one of the threads modifies the map structurally, it must be synchronized externally. (A structural modification is any operation that adds or deletes one or more mappings; merely changing the value associated with a key that an instance already contains is not a structural modification.) This is typically accomplished by synchronizing on some object that naturally encapsulates the map. If no such object exists, the map should be "wrapped" using the Collections.synchronizedMap method. This is best done at creation time, to prevent accidental unsynchronized access to the map: Map m = Collections.synchronizedMap(new HashMap(...));The iterators returned by all of this class's "collection view methods" are fail-fast: if the map is structurally modified at any time after the iterator is created, in any way except through the iterator's own remove method, the iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

This class is a member of the Java Collections Framework.

Feild

DEFAULT_INITIAL_CAPACITY 初始容量

The default initial capacity - MUST be a power of two.

不论传入的initial capacity是多少,都会转化比他小且离他最近的2的幂

至于为什么是2的幂,呵呵呵呵,往下看

|  default=16

 int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;

DEFAULT_INITIAL_CAPACITY 初始容量

元素个数永远不会超过这个上限,不论如何设置和扩展。

|  MAXIMUM = 1<<30 = 2^29

 if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;

DEFAULT_LOAD_FACTOR 复制因子

当容量达到当前最大容量的多少时需要启动复制

|  default = 0.75

threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);

threshold 复制门槛

当前容量超过(put时检查)threshold时,复制底层数据结果以扩展

if (size++ >= threshold)
resize(2 * table.length);

modCount 修改计数

This field is used to make iterators on Collection-views of
the HashMap fail-fast

Hash

良好的hash保证,所有元素恰好落入数组的中(尽可能减少重复,以便减少指针移动次数)
当出现重复时,以链表的形式保存(新元素插入链表第一个!important)

|  HashCode = Object.hashCode()

Magic

|  优化hash与更高效的散列算法

基于位的散列算法

    //该方法返回此hash值应该储存在数组的下标
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
return h & (length-1);
}

|  PHP实现的测试代码

<?php
$arr = array();
$length = 10; //array length - 1
$data_length = 2001; //hashcode from 1 to 2002 for($i = 1; $i< $data_length; $i++) { if( !isset($arr[$i & $length]) ) {
$arr[$i & $length] = 1;
} else {
$arr[$i & $length]++;
}
} var_dump($arr);
case 1

| $length = 10
| $data_length = 2001

运行结果:
很巧的是,有的下标上居然没有落值,而有值得下标的值非常均匀

case 2

| $length = 7 = 2^3 - 1

| $data_length = 2001

实验一下数组长度为2的幂

运行结果:
恰好均匀的落在了每一个上面

注意1<<n - 1 的所有位都是1,这样恰好可以保证从任意数恰好均匀落在所有位置上,原理等同于取余,但是限制是底数必须为2的幂,但是全是位操作 

优化Hash或抵制低效Hash

    /**
* Applies a supplemental hash function to a given hashCode, which
* defends against poor quality hash functions. This is critical
* because HashMap uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits. Note: Null keys always map to hash 0, thus index 0.
*/
static int hash(int h) {
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}

由于ForIndex方法的存在,为了避免出现低位相同的情况(低位相同会导致虽然高位不同的hashcode落在同样的下标上)

例如:原始数组3个(代表3个hash值),分别为 31,63,95,另外初始容量为16 = 2 ^ 4 = 10000

31=00000000000000000000000000011111
63=00000000000000000000000000111111
95=00000000000000000000000001011111

直接使用indexFor()结果如下

31=00000000000000000000000000011111 & 1111 = 1111 & 1111 = 15
63=00000000000000000000000000111111 & 1111 = 1111 & 1111 = 15
95=00000000000000000000000001011111 & 1111 = 1111 & 1111 = 15 //这说明质量低下的hash的低位总是相同,不适应indexFor

使用hash(),结果如下

 31=00000000000000000000000000011111 => 00000000000000000000000000011110
63=00000000000000000000000000111111 => 00000000000000000000000000111100
95=00000000000000000000000001011111 => 00000000000000000000000001011010 //这样一来低位就不同了
00000000000000000000000000011110 & 1111 = 1110 & 1111 = 14
00000000000000000000000000111100 & 1111 = 1100 & 1111 = 12
00000000000000000000000001011010 & 1111 = 1010 & 1111 = 10

散列操作的主要目的是使在低位的散列码的差异明显,使得散列映射元件能够均匀地分布

Put & Get

    public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
} modCount++;
addEntry(hash, key, value, i);
return null;
} public V get(Object key) {
if (key == null)
return getForNullKey();
int hash = hash(key.hashCode());
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}

e.hash == hash && ((k = e.key) == key || key.equals(k)

Hooks

init

初始化的时候的hook

    /**
* Initialization hook for subclasses. This method is called
* in all constructors and pseudo-constructors (clone, readObject)
* after HashMap has been initialized but before any entries have
* been inserted. (In the absence of this method, readObject would
* require explicit knowledge of subclasses.)
*/
void init() {
}

remove & access

//Class.Entry

/**
* This method is invoked whenever the value in an entry is
* overwritten by an invocation of put(k,v) for a key k that's already
* in the HashMap.
*/
void recordAccess(HashMap<K,V> m) {
} /**
* This method is invoked whenever the entry is
* removed from the table.
*/
void recordRemoval(HashMap<K,V> m) {
}

HashMap,Hash优化与高效散列的更多相关文章

  1. HashMap的实现原理--链表散列

    1.    HashMap概述 HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变. ...

  2. Hash算法:双重散列

    双重散列是线性开型寻址散列(开放寻址法)中的冲突解决技术.双重散列使用在发生冲突时将第二个散列函数应用于键的想法. 此算法使用: (hash1(key) + i * hash2(key)) % TAB ...

  3. 【Java集合学习】HashMap源码之“拉链法”散列冲突的解决

    1.HashMap的概念 HashMap 是一个散列表,它存储的内容是键值对(key-value)映射. HashMap 继承于AbstractMap,实现了Map.Cloneable.java.io ...

  4. java 散列与散列码探讨 ,简单HashMap实现散列映射表运行各种操作示列

    java 散列与散列码探讨 ,简单HashMap实现散列映射表运行各种操作示列 package org.rui.collection2.maps; /** * 散列与散列码 * 将土拔鼠对象与预报对象 ...

  5. JDK1.8中对hashmap的优化

    在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外.HashMap实际上是一个“链表散列”的数据结 ...

  6. 【数据结构】之散列链表(Java语言描述)

    散列链表,在JDK中的API实现是 HashMap 类. 为什么HashMap被称为“散列链表”?这与HashMap的内部存储结构有关.下面将根据源码进行分析. 首先要说的是,HashMap中维护着的 ...

  7. Android数据加密之SHA安全散列算法

    前言: 对于SHA安全散列算法,以前没怎么使用过,仅仅是停留在听说过的阶段,今天在看图片缓存框架Glide源码时发现其缓存的Key采用的不是MD5加密算法,而是SHA-256加密算法,这才勾起了我的好 ...

  8. 【Java-加密算法】对称加密、非对称加密、单向散列(转)

    一提到加密,就会联想到数字签名,这两个经常被混淆的概念到底是什么呢? 加密:加密是一种以密码方式发送信息的方法.只有拥有正确密钥的人才能解开这个信息的密码.对于其他人来说,这个信息看起来就像是一系列随 ...

  9. JDK8;HashMap:再散列解决hash冲突 ,源码分析和分析思路

    JDK8中的HashMap相对JDK7中的HashMap做了些优化. 接下来先通过官方的英文注释探究新HashMap的散列怎么实现 先不给源码,因为直接看源码肯定会晕,那么我们先从简单的概念先讲起   ...

随机推荐

  1. java并发编程:线程安全管理类--原子操作类--AtomicLong

    可以用原子方式更新的 long 值.有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范.AtomicLong 可用在应用程序中(如以原子方式增加的序列号), ...

  2. 物理内存不够用,临时增大Linux交换分区的方法

    当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用.那些被释放的空间可能来自一些很长时间没有什么 操作的程序,这些被释放的空间被临时保存到Swap空间中,等到 ...

  3. openfalcon源码分析之agent

    本节内容 agent功能 1.1 agent上报数据 1.2 agent与HBS同步 1.3 agent Http服务 agent源码分析 2.1 初始化config配置 2.2 初始化根目录,本地I ...

  4. java创建类的5种方式

    1.使用new关键字 } → 调用了构造函数 这种方式,我们可以调用任意的构造函数(无参的和带参数的). 2.使用Class类的newInstance方法 } → 调用了构造函数 使用Class类的n ...

  5. 06-jenkins的账号相关的问题

    飞测说:最近几天,在团队分享jenkins后,大家都十分感兴趣,各自下载安装和练习,然而jenkins2.3安装默认有权限设置,这块好多人遇到了问题,现在统一就账号登录的问题一起看看,踩过的坑,希望对 ...

  6. 在Android中来修改SQL里面的权限和显示内容

    1.在Android中建立了一个数据库. 然后要知道存储数据库的路劲.得到路劲然后进入cmd里面进到 手机终端. 2.利用splite3来显示数据库里面的东西. 3.利用chmod来修改数据库文件的权 ...

  7. test20181019 B君的第二题

    题意 分析 快速子集和变换以及快速超集和变换的裸题. 用\(f(s)\)表示集合s的方案数,初始化为输入中s出现的次数. 做一遍快速子集和变换,此时f(s)表示s及其子集在输入中出现的次数. 对所有f ...

  8. 创建自定义graphql-binding

    graphql-binding 是一个比较方便强大的工具,方便我们进行代码生成以及开发gateway的功能 项目初始化 使用prisma cli 使用脚手架 prisma init appdemo ? ...

  9. C#多线程应用:子线程更新主窗体控件的值(一)

    我记得以前写过一次关于多线程的调用及更新的文章,由于时间比较久了,现在一时没找到.在做项目的时候,用到了多线程,还是有很多的同事在问多线程更新主窗体的事情,现在就这个事情做个记录. 说起多线程之间的更 ...

  10. Mybatis 全局配置文件中typeAliases(别名)

    在具体的mapper.xml文件中,定义很多的statement,statement需要parameterType指定输入参数的类型.需要resultType指定输出结果的映射类型. 如果在指定类型时 ...