Python FFT (Fast Fourier Transform)
- np.fft.fft
import matplotlib.pyplot as plt
import plotly.plotly as py
import numpy as np
# Learn about API authentication here: https://plot.ly/python/getting-started
# Find your api_key here: https://plot.ly/settings/api Fs = 150.0; # sampling rate
Ts = 1.0/Fs; # sampling interval
t = np.arange(0,1,Ts) # time vector ff = 5; # frequency of the signal
y = np.sin(2*np.pi*ff*t) n = len(y) # length of the signal
k = np.arange(n)/n
frq = Fs*k # two sides frequency range
frq = frq[range(n/2)] # one side frequency range Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[range(n/2)] fig, ax = plt.subplots(2, 1)
ax[0].plot(t,y)
ax[0].set_xlabel('Time')
ax[0].set_ylabel('Amplitude') ax[1].plot(frq,abs(Y),'r') # plotting the spectrum
ax[1].set_xlabel('Freq (Hz)')
ax[1].set_ylabel('|Y(freq)|')
Python FFT (Fast Fourier Transform)的更多相关文章
- 使用 scipy.fft 进行Fourier Transform:Python 信号处理
摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:P ...
- 数字图像处理实验(5):PROJECT 04-01 [Multiple Uses],Two-Dimensional Fast Fourier Transform 标签: 图像处理MATLAB数字图像处理
实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and ver ...
- 「学习笔记」Fast Fourier Transform
前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...
- 【OI向】快速傅里叶变换(Fast Fourier Transform)
[OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. (以下应用只针对OI) 一句话:求多项式 ...
- 快速傅里叶变换(Fast Fourier Transform, FFT)和短时傅里叶变换(short-time Fourier transform,STFT )【资料整理】【自用】
1. 官方形象展示FFT:https://www.bilibili.com/video/av19141078/?spm_id_from=333.788.b_636f6d6d656e74.6 2. 讲解 ...
- 1250 Super Fast Fourier Transform(湘潭邀请赛 暴力 思维)
湘潭邀请赛的一题,名字叫"超级FFT"最终暴力就行,还是思维不够灵活,要吸取教训. 由于每组数据总量只有1e5这个级别,和不超过1e6,故先预处理再暴力即可. #include&l ...
- Fast Fourier Transform
写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...
- Fast Fourier Transform ——快速傅里叶变换
问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$ ...
- XTUOJ1250 Super Fast Fourier Transform 暴力
分析:因为加起来不超过1e6,所以最多有1000+个不同的数 做法:离散化搞就好了 #include <cstdio> #include <iostream> #include ...
随机推荐
- springboot第四篇:debug模式开发运用
前提:项目是以maven project结构建立的,现状是无法进行断点调试的.怎么才能在eclipse里进行调试呢? 需要:①将项目打包部署到tomcat ②往项目加入dynamic web modu ...
- JS正则表达式端口号,IP地址
端口号:65535 正则:/^([0-9]|[1-9]\d|[1-9]\d{2}|[1-9]\d{3}|[1-5]\d{4}|6[0-4]\d{3}|65[0-4]\d{2}|655[0-2]\d|6 ...
- [BZOJ 5072][Lydsy1710月赛]小A的树
传送门 \(\color{green}{solution}\) 嗯...其实我也不太会,所以大胆猜个结论吧(后来证了一下,然后放弃了...). 我们发现如果要使一个联通块的黑点数量为\(k\)的方案最 ...
- [转] Mock以及Mockito的使用
http://www.open-open.com/lib/view/open1462177583813.html [From] http://www.open-open.com/lib/view/op ...
- 什么是WCF(转)
什么是WCF(Windows Communication Foundation(WCF)) 大家可以百度一下了解什么是WCF.当然有些人看到密密麻麻的黑框白字就懒的读.即使读了 可能也没明白确切的含义 ...
- Nginx PHP fpm forbidden 原因
可能是标红目录层级不一致 location / { root /var/www/html/public; index index.php; } location ~ \.php$ { root /va ...
- interceptor&filter
1.基于 filter基于filter接口中的doFilter回调函数: interceptor则基于Java本身的反射机制: 2.与servlet关系 filter是依赖于servlet容器的,没有 ...
- centos7.x设置nginx开机自启动
设置nginx开机自启动(centos7.x) 第一步:进入到/lib/systemd/system/目录 [root@iz2z init.d]# cd /lib/systemd/system/ 第二 ...
- The servlets named [create_subscription] and [servlet.create] are both mapped to the url-pattern [/create] which is not permitted [duplicate]
原因,代码中在public前已经有了默认的配置路径: 如: @WebServlet("/ShowUser")public class ShowUser extends HttpSe ...
- 转自IBM:Apache HTTP Server 与 Tomcat 的三种连接方式介绍
http://www.ibm.com/developerworks/cn/opensource/os-lo-apache-tomcat/index.html 整合 Apache Http Server ...