Loj 114 k大异或和

  • 构造线性基时有所变化.试图构造一个线性基,使得从高到低位走,异或上一个非 \(0\) 的数,总能变大.
  • 构造时让任意两个 \(bas\) 上有值的 \(i,j\) ,满足 \(bas_i\) 的第 \(j\) 位为 \(0\) ,这样就可以使得从高往低走异或上当前数一定变大.
  • 那么最大的方案就是每一位都异或,第 \(k\) 大的方案只需要根据 \(k\) 的二进制拆分判一下每一位是否异或就可以了.
  • 注意如果这个基底向量组是满秩的,那么 \(0\) 就无法异或出,需让 \(k=k+1\) .
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXD=50,MAXN=1e5+10;
ll bas[MAXD+10];
int n,rank=0;
void ins(ll x)
{
for(int i=MAXD; i>=0; --i)
{
if((x>>i) & 1LL)
{
if(!bas[i])
{
bas[i]=x;
++rank;
for(int j=i-1; j>=0; --j)
if((bas[i]>>j) & 1LL)
bas[i]^=bas[j];
for(int j=i+1; j<=MAXD; ++j)
if((bas[j]>>i) & 1LL)
bas[j]^=bas[i];
break;
}
else
x^=bas[i];
}
}
}
ll solve(ll k)
{
if(rank==n)
++k;
if(k> (1LL<<rank) )
return -1;
ll ans=0;
int mxd=rank-1;
for(int i=MAXD;i>=0;--i)
{
if(!bas[i])
continue;
if(k>(1LL<<mxd))
ans^=bas[i],k-=1LL<<mxd;
--mxd;
}
return ans;
}
int main()
{
n=read();
for(int i=1; i<=n; ++i)
ins(read());
int m=read();
while(m--)
{
ll k=read();
printf("%lld\n",solve(k));
}
return 0;
}

Loj 114 k大异或和的更多相关文章

  1. [LOJ#114]k 大异或和

    [LOJ#114]k 大异或和 试题描述 这是一道模板题. 给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 T⊆S,使得集合 T 在 S 的所有非空子集的不同的异或和中,其异或和  ...

  2. LOJ.114.K大异或和(线性基)

    题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基, ...

  3. LibreOJ #114. k 大异或和

    二次联通门 : LibreOJ #114. k 大异或和 /* LibreOJ #114. k 大异或和 WA了很多遍 为什么呢... 一开始读入原数的时候写的是for(;N--;) 而重新构造线性基 ...

  4. 【线性基】51nod1312 最大异或和&LOJ114 k大异或和

    1312 最大异或和 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 难度:7级算法题   有一个正整数数组S,S中有N个元素,这些元素分别是S[0] ...

  5. 第k大异或值

    这道题与2018年十二省联考中的异或粽子很相像,可以算作一个简易版: 因为这不需要可持久化: 也就是说求任意两个数异或起来的第k大值: 首先把所有数放进trie里. 然后二分答案,枚举每个数,相应地在 ...

  6. LOJ114 k大异或和

    传送门 (vjudge和hdu也有但是我觉得LOJ好看!而且限制少!) 不过本题描述有误,应该是k小. 首先我们需要对线性基进行改造.需要把每一位改造成为,包含最高位的能异或出来的最小的数. 为啥呢? ...

  7. 【loj114】k大异或和 线性基+特判

    题目描述 给由 $n​$ 个数组成的一个可重集 $S​$ ,每次给定一个数 $k​$ ,求一个集合 $T⊆S​$ ,使得集合 $T​$ 在 $S​$ 的所有非空子集的不同的异或和中,其异或和 $T_1 ...

  8. hdu 3949 第k大异或组合

    题意: 给你一些数,其中任选一些数(大于等于一个),那么他们有一个异或和. 求所有这样的异或和的第k小. 我们可以将每一位看成一维,然后就是给我们n个60维的向量,求它们线性组合后得到的向量空间中,第 ...

  9. 1738. 找出第 K 大的异或坐标值

    2021-05-19 LeetCode每日一题 链接:https://leetcode-cn.com/problems/find-kth-largest-xor-coordinate-value/ 标 ...

随机推荐

  1. lua实现单例模式

    Singleton = {} function Singleton:new(o) o = o or {} setmetatable(o,self) self.__index = self return ...

  2. Codeforces Round #524 (Div. 2) Solution

    A. Petya and Origami Water. #include <bits/stdc++.h> using namespace std; #define ll long long ...

  3. uva1292 树形dp

    这题说的是给了一个n个节点的一棵树,然后 你 从 这 棵 树 的 n 个 节点中 选择 尽量少的 点使得 每条边都至少有一个 士兵看守 dp[0][i]+=dp[1][j] dp[1][i]+=min ...

  4. MySQL的GTID复制

    从mysql5.6开始引入全局事务标识符(GTID),即每个事务都有一个唯一的标识符.服务器上的每个事务都被分配一个唯一的事务标识符,这是一个64位非零的数值,根据事务提交的顺序分配.GTID的构成是 ...

  5. Git简介【转】

    本文转载自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 Git简介 Git是什 ...

  6. 【异常记录(七)】MVC:从客户端中检测到有潜在危险的 Request.Form 值 的解决方法 [转]

    从客户端(Content="<EM ><STRONG ><U >这是测试这...")中检测到有潜在危险的Request.Form 值. 说明:  ...

  7. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

  8. C#中标准Dispose模式的实现(转载)

    需要明确一下C#程序(或者说.NET)中的资源.简单的说来,C#中的每一个类型都代表一种资源,而资源又分为两类: 托管资源:由CLR管理分配和释放的资源,即由CLR里new出来的对象: 非托管资源:w ...

  9. python yaml文件读写

    import yaml yaml_dict={"} with open("a.yaml", "w") as f: yaml.safe_dump(yam ...

  10. git 重写历史

    重写最后一次提交的commit git commit --amend 修改多个历史 git rebase -i HEAD~3 命令执行后结果如下: pick f7f3f6d changed my na ...